OFFSET
0,2
COMMENTS
Denominators form the Les Marvin sequence: A007502(n+1).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
G.f.: (1+x-x^3)/(1-x-x^2)^2. [Corrected by Georg Fischer, Aug 16 2021]
a(n) = Fibonacci(n) + (n+1)*Fibonacci(n+1). - Paul Barry, Apr 20 2004
a(n) = a(n-1) + a(n-2) + Lucas(n). - Yuchun Ji, Apr 23 2023
EXAMPLE
a(3)/A007502(4) = [1;1,1,4] = 14/9.
MATHEMATICA
f[n_] := Numerator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2, {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, -2, -1}, {1, 3, 7, 14}, 40] (* Harvey P. Dale, Jul 13 2021 *)
PROG
(Haskell)
a088209 n = a088209_list !! n
a088209_list = zipWith (+) a000045_list $ tail a045925_list
-- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
(Julia) # The function 'fibrec' is defined in A354044.
function A088209(n)
n == 0 && return BigInt(1)
a, b = fibrec(n)
a + (n + 1)*b
end
println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, Sep 23 2003
STATUS
approved