login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125176
Row sums of A125175.
5
1, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384, 7516192768, 15032385536
OFFSET
1,2
FORMULA
a(1) = 1, a(2) = 3, a(n) = 7*2^(n-3) for n>=3.
From Colin Barker, Oct 12 2013: (Start)
a(n) = 2*a(n-1) for n>3.
G.f.: x*(1 + x + x^2)/(1-2*x). (End)
E.g.f.: (7*exp(2*x) - 7 - 6*x - 2*x^2)/8. - G. C. Greubel, Jun 05 2019
EXAMPLE
First few rows of A125175 are:
1;
1, 2;
1, 3, 3;
1, 4, 5, 4;
....
a(4) = 1 + 4 + 5 + 4 = 14.
a(6) = 1 + 6 + 14 + 20 + 9 + 6 = 56 = 7*8 = 7*2^3.
MATHEMATICA
Rest@CoefficientList[Series[x*(1+x+x^2)/(1-2*x), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 12 2013 *)
PROG
(PARI) concat([1, 3], vector(30, n, 7*2^(n-1))) \\ G. C. Greubel, Jun 05 2019
(Magma) [1, 3] cat [7*2^(n-3): n in [3..40]]; // G. C. Greubel, Jun 05 2019
(Sage) [1, 3]+[7*2^(n-3) for n in (3..40)] # G. C. Greubel, Jun 05 2019
(GAP) Concatenation([1, 3], List([3..40], n-> 7*2^(n-3))); # G. C. Greubel, Jun 05 2019
(Python) print([7*2**n//8 for n in range(1, 50)]) # Karl V. Keller, Jr., May 11 2022
CROSSREFS
Cf. A125175.
Essentially identical to A005009.
Sequence in context: A140741 A088209 A089074 * A153234 A293334 A266625
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Nov 22 2006
EXTENSIONS
More terms from N. J. A. Sloane, Dec 15 2007
STATUS
approved