login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088207
a(n) = Sum_{k=0..n} floor(k*phi^2) where phi=(1+sqrt(5))/2.
1
0, 2, 7, 14, 24, 37, 52, 70, 90, 113, 139, 167, 198, 232, 268, 307, 348, 392, 439, 488, 540, 594, 651, 711, 773, 838, 906, 976, 1049, 1124, 1202, 1283, 1366, 1452, 1541, 1632, 1726, 1822, 1921, 2023, 2127, 2234, 2343, 2455, 2570, 2687, 2807, 2930, 3055, 3183
OFFSET
0,2
COMMENTS
Partial sums of A001950.
A001950 is the upper Beatty sequence for the constant phi^2, where phi = (1 + sqrt(5))/2 and the sequence is generated by floor(n*phi). A054347 = partial sums of the lower Beatty sequence (A000201).
Conjecture: a(n)/A054347(n) tends to phi. Example: a(28)/A054347(28) = 1049/643 = 1.6314...
From Michel Dekking, Aug 19 2019: (Start)
Proof of Adamson's conjecture. We know that lim_{n->oo} A054347(n)/(n*(n+1)) = phi/2 (see A054347).
Using that floor(k*phi^2) = floor(k*phi)+k, for k=1,...,n, we obtain a(n)/A054347(n) = (A054347(n)+(n*(n+1)/2))/((n*(n+1))))/(A054347(n)/(n*(n+1)/2) [Ambiguous, unbalanced parens - Editors of OEIS] -> (phi/2 + 1/2)/(phi/2), which equals phi.
(End)
FORMULA
a(n) = Sum_{k=1..n} floor(k*phi^2).
a(n) = floor((n*(n+1)/2)*phi^2 - n/2) + (0 or 1). - Benoit Cloitre, Sep 27 2003
EXAMPLE
A001950(1) = 2, then 5, 7, 10, 13, ...; partial sums are 2, 7, 14, 24, 37, ...
MATHEMATICA
a[0] = 0; a[n_] := a[n] = (a[n - 1] + Floor[n*(1 + Sqrt[5])^2/4]); Table[ a[n], {n, 1, 50}] (* Robert G. Wilson v, Sep 27 2003 *)
Accumulate[Floor[GoldenRatio^2 Range[0, 50]]] (* Harvey P. Dale, Aug 11 2021 *)
PROG
(Python)
from math import isqrt
from itertools import islice, count, accumulate
def A088207_gen(): # generator of terms
return accumulate((n+isqrt(5*n**2)>>1)+n for n in count(0))
A088207_list = list(islice(A088207_gen(), 10)) # Chai Wah Wu, Aug 29 2022
CROSSREFS
Cf. A001622 (phi), A001950, A054347, A000201, A000217 (triangular numbers).
Sequence in context: A051640 A119354 A249547 * A194111 A343859 A102999
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Sep 23 2003
EXTENSIONS
More terms from Robert G. Wilson v and Benoit Cloitre, Sep 27 2003
STATUS
approved