login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354043
Table read by rows: T(n, k) = (-1)^(n-k)*F(n, k)/k!, where F are the Faulhaber numbers A354042.
3
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 36, 10, 1, 0, 600, 600, 170, 20, 1, 0, 16584, 16584, 4720, 574, 35, 1, 0, 705600, 705600, 201040, 24640, 1568, 56, 1, 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1, 0, 3790108800, 3790108800, 1080240480, 132713280, 8554896, 325152, 7812, 120, 1
OFFSET
0,8
COMMENTS
I. Gessel and X. Viennot give two combinatorial interpretations for the Faulhaber numbers (see link). We quote their theorems 32 an 33, using our notation:
Theorem: T(n, k) is the number of row-strict tableaux of shape (n - k + 2, n - k + 1, ..., 2) - (n - k - 1, n - k - 2, ..., 0) with positive integer entries in which the largest entry in row i is at most n + 2 - i.
Theorem: T(n, k) is the number of sequences a_{1} a_{2} ... a_{3n-3k} of positive integers satisfying a_{3i-2} < a_{3i-1} < a_{3i}, a_{3i-1} >= a_{3i+1}, a_{3i} >= a_{3i+2}, and a_{3i} <= k + i + 1 for all i.
LINKS
I. M. Gessel and X. G. Viennot, Determinants, Paths, and Plane Partitions, 1989 preprint.
EXAMPLE
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 4, 4, 1;
[4] 0, 36, 36, 10, 1;
[5] 0, 600, 600, 170, 20, 1;
[6] 0, 16584, 16584, 4720, 574, 35, 1;
[7] 0, 705600, 705600, 201040, 24640, 1568, 56, 1;
[8] 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1;
MAPLE
T := (n, k) -> ifelse(n = 0, 1, (-1)^n*((n + 1)!/k!)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (j - k), j = 0..(k-1)/2)): for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
CROSSREFS
Cf. A354042, A354045 (row sums).
Sequence in context: A164612 A309748 A180401 * A057270 A057278 A010303
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 17 2022
STATUS
approved