login
A354043
Table read by rows: T(n, k) = (-1)^(n-k)*F(n, k)/k!, where F are the Faulhaber numbers A354042.
3
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 36, 10, 1, 0, 600, 600, 170, 20, 1, 0, 16584, 16584, 4720, 574, 35, 1, 0, 705600, 705600, 201040, 24640, 1568, 56, 1, 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1, 0, 3790108800, 3790108800, 1080240480, 132713280, 8554896, 325152, 7812, 120, 1
OFFSET
0,8
COMMENTS
I. Gessel and X. Viennot give two combinatorial interpretations for the Faulhaber numbers (see link). We quote their theorems 32 an 33, using our notation:
Theorem: T(n, k) is the number of row-strict tableaux of shape (n - k + 2, n - k + 1, ..., 2) - (n - k - 1, n - k - 2, ..., 0) with positive integer entries in which the largest entry in row i is at most n + 2 - i.
Theorem: T(n, k) is the number of sequences a_{1}a_{2} ยทยทยท a_{3n-3k) of positive integers satisfying a_{3i-2} < a_{3i-1} < a_{3i}, a_{3i-1} >= a_{3i+1}, a_{3i} >= a_{3i+2}, and a_{3i} <= k + i + 1 for all i.
LINKS
I. M. Gessel and X. G. Viennot, Determinants, Paths, and Plane Partitions, 1989 preprint.
EXAMPLE
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 4, 4, 1;
[4] 0, 36, 36, 10, 1;
[5] 0, 600, 600, 170, 20, 1;
[6] 0, 16584, 16584, 4720, 574, 35, 1;
[7] 0, 705600, 705600, 201040, 24640, 1568, 56, 1;
[8] 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1;
MAPLE
T := (n, k) -> ifelse(n = 0, 1, (-1)^n*((n + 1)!/k!)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (j - k), j = 0..(k-1)/2)): for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
CROSSREFS
Cf. A354042, A354045 (row sums).
Sequence in context: A164612 A309748 A180401 * A057270 A057278 A010303
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 17 2022
STATUS
approved