login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180401 Stirling-like sequence obtained from bipartite 0-1 tableaux. 0
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 33, 10, 1, 0, 576, 480, 148, 20, 1, 0, 14400, 10960, 3281, 483, 35, 1, 0, 518400, 362880, 103824, 15552, 1288, 56, 1, 0, 25401600, 16465680, 4479336, 663633, 57916, 2982, 84, 1, 0, 1625702400, 981872640, 253732096, 36690816, 3252624, 181312, 6216, 120, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Gives the number of ways to construct pairs of permutations of an n-element set into k cycles such that the sum of the minima of the i-th cycle of the first permutation and the (k-i+1)-th cycle of the second permutation is n+1.

LINKS

Table of n, a(n) for n=1..55.

K. J. M. Gonzales, Enumeration of Restricted Permutation Pairs and Partitions Pairs via 0-1 Tableaux, arXiv:1008.4192 [math.CO], 2010-2014.

A. de Medicis and P. Leroux, Generalized Stirling Numbers, Convolution Formulae and p,q-Analogues, Can. J. Math. 47 (1995), 474-499.

FORMULA

G.f.: sum_{all r=>0} C(n,k) x^r = prod_{all v+w=n,0<=v,w<=n-1} (x+vw)

Symm. f: C(n,k)=sum_{all 0 <=i_1<i_2<...<i_{n-k}<=n-1}

(i_1*(n-1)-i_1)*(i_2*(n-1)-i_2)*...*(i_{n-k}*(n-1)-i_{n-k})

Recurrences: Let C(n,k;r)=sum_{all 0 <=i_1<i_2<...<i_{n-k}<=n-1}

(i_1*(r+(n-1)-i_1))*(i_2*(r+(n-1)-i_2))*...*(i_{n-k}*(r+(n-1)-i_{n-k})). Then,

C(n,k)=C(n-1,k-1,1)+(n)C(n-1,k,1)

EXAMPLE

For n=6, C(6,0)=0, C(6,1)=0, C(6,2)=1, C(6,3)=32, C(6,4)=67, C(6,5)=20, C(6,6)=1

PROG

(R) ## Runs on R 2.7.1

## Here, beta=r in recurrences

cnk<-function(n, k, beta=0){

alpha=0

as<-function(j){j}

bs<-function(j){j}

form.seq<-function(n, fcn){ss<-NULL; for(i in 0:n){ss<-c(ss, fcn(i))}; ss}

seq.a<-form.seq(n+alpha+1, as)

seq.b<-form.seq(n+beta+1, bs)

v<-function(i){i}

w<-function(i){i}

if(n>k){

Atab<-combn(1:n-1, n-k)

Btab<-n-1-Atab+beta

Atab<-Atab+alpha

px<-NULL

for(i in 1:ncol(Atab)){

partial<-NULL

for(j in 1:nrow(Atab)){

partial<-c(partial, (v(seq.a[Atab[j, i]+1])*w(seq.b[Btab[j, i]+1])))

} # for(j in 1:nrow(Atab))

px<-c(px, prod(partial))

}# for(i in 1:ncol(Atab))

} # if(n>k)

if(n>k) x<-sum(px)

if(n==k) x=1

if(n<k) x=0

x

}

# Example

cnk(7, 4)

CROSSREFS

Cf. A000292, A080251.

Sequence in context: A163353 A164612 A309748 * A057270 A057278 A010303

Adjacent sequences:  A180398 A180399 A180400 * A180402 A180403 A180404

KEYWORD

nonn,tabl

AUTHOR

Ken Joffaniel M Gonzales, Sep 02 2010, Sep 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 01:51 EDT 2020. Contains 334811 sequences. (Running on oeis4.)