OFFSET
1,3
COMMENTS
Also least period for number of ways of placing k non-attacking queens on an n X n chessboard. [conjectured by Kotesovec; proved for n <= 5. - Thomas Zaslavsky, Jun 24 2018]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..17
Christopher R. H. Hanusa, T. Zaslavsky, S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
V. Kotesovec, Non-attacking chess pieces, 6ed, p.31, 2013
MAPLE
a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1, 2]):
seq(a(n), n=1..14); # Alois P. Heinz, Aug 12 2017
MATHEMATICA
Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
PROG
(PARI) a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 02 2010
EXTENSIONS
a(11) onwards from Robert G. Wilson v, Sep 05 2010
STATUS
approved