login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171985
Number of partitions of 2*n-1 into parts not greater than n.
2
1, 2, 5, 11, 23, 44, 82, 146, 252, 423, 695, 1116, 1763, 2738, 4192, 6334, 9459, 13968, 20425, 29588, 42496, 60547, 85628, 120246, 167762, 232605, 320635, 439544, 599412, 813360, 1098480, 1476870, 1977087, 2635869, 3500382, 4630932, 6104533, 8019131, 10499093
OFFSET
1,2
COMMENTS
Central terms of the triangle in A026820: a(n)=A026820(2*n-1,n).
LINKS
EXAMPLE
a(4) = (partitions of 7 into parts <= 4) = #{4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+2, 3+2+1+1, 3+1+1+1+1, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1} = 11.
MAPLE
g:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
end:
a:= n-> g(2*n-1, n):
seq (a(n), n=1..40); # Alois P. Heinz, Jul 18 2012
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i>1, g[n, i-1], 0]+If[i>n, 0, g[n-i, i]]]; a[n_] := g[2*n-1, n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A124920 A064934 A227637 * A354044 A005986 A333396
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 21 2010
STATUS
approved