login
A333396
Total length of all longest runs of 0's in multus bitstrings of length n.
2
1, 2, 5, 11, 23, 45, 87, 165, 309, 573, 1056, 1934, 3527, 6408, 11605, 20960, 37771, 67928, 121949, 218595, 391302, 699610, 1249475, 2229329, 3974083, 7078658, 12599318, 22410548, 39837420, 70775727, 125675525, 223052519, 395702395, 701695820, 1243827018, 2204007329
OFFSET
1,2
COMMENTS
A bitstring is multus if each of its 1's possess at least one neighboring 1.
The number of these bitstrings is A005251(n+2).
LINKS
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
FORMULA
G.f.: x*Sum_{k>=1} (1+x^2)/(1-2*x+x^2-x^3)-(1+x^2-x^(k-1)+x^k-2*x^(k+1))/(1-2*x+x^2-x^3+x^(k+2)).
EXAMPLE
a(4) = 11 because the seven multus bitstrings of length 4 are 0000, 1100, 0110, 0011, 1110, 0111, 1111 and the longest 0-runs contribute 4+2+1+2+1+1+0 = 11.
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Mar 18 2020
STATUS
approved