OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
O. J. Rodseth, J. A. Sellers and H. Tverberg, Enumeration of the Degree Sequences of Non-Separable Graphs and Connected Graphs, European Journal of Combinatorics 30 (2009), 1301-1317.
FORMULA
a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j).
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - Vaclav Kotesovec, Nov 05 2016
EXAMPLE
From Gus Wiseman, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 23 connected multigraphical partitions:
(11) (22) (33) (44) (55)
(211) (222) (332) (433)
(321) (422) (442)
(2211) (431) (532)
(3111) (2222) (541)
(3221) (3322)
(3311) (3331)
(4211) (4222)
(22211) (4321)
(32111) (4411)
(41111) (5221)
(5311)
(22222)
(32221)
(33211)
(42211)
(43111)
(52111)
(222211)
(322111)
(331111)
(421111)
(511111)
(End)
MAPLE
with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60);
PROG
(PARI) a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ Michel Marcus, Nov 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
James A. Sellers, Nov 16 2008
EXTENSIONS
Offset corrected by Michel Marcus, Nov 04 2016
STATUS
approved