login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147878
The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed).
18
1, 2, 5, 11, 23, 46, 86, 156, 273, 463, 766, 1241, 1969, 3073, 4723, 7157, 10711, 15850, 23206, 33654, 48373, 68955, 97544, 137002, 191125, 264955, 365127, 500349, 682018, 924982, 1248502, 1677530, 2244229, 2989952, 3967732, 5245354, 6909211
OFFSET
1,2
FORMULA
a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j).
a(n) = A000041(2*n) - 2*A000070(n) + 2*A000041(n) + A000041(n-1). - Vaclav Kotesovec, Nov 05 2016
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - Vaclav Kotesovec, Nov 05 2016
EXAMPLE
From Gus Wiseman, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 23 connected multigraphical partitions:
(11) (22) (33) (44) (55)
(211) (222) (332) (433)
(321) (422) (442)
(2211) (431) (532)
(3111) (2222) (541)
(3221) (3322)
(3311) (3331)
(4211) (4222)
(22211) (4321)
(32111) (4411)
(41111) (5221)
(5311)
(22222)
(32221)
(33211)
(42211)
(43111)
(52111)
(222211)
(322111)
(331111)
(421111)
(511111)
(End)
MAPLE
with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60);
PROG
(PARI) a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ Michel Marcus, Nov 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
James A. Sellers, Nov 16 2008
EXTENSIONS
Offset corrected by Michel Marcus, Nov 04 2016
STATUS
approved