login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed).
18

%I #21 Feb 23 2023 09:55:28

%S 1,2,5,11,23,46,86,156,273,463,766,1241,1969,3073,4723,7157,10711,

%T 15850,23206,33654,48373,68955,97544,137002,191125,264955,365127,

%U 500349,682018,924982,1248502,1677530,2244229,2989952,3967732,5245354,6909211

%N The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed).

%H Vaclav Kotesovec, <a href="/A147878/b147878.txt">Table of n, a(n) for n = 1..10000</a>

%H O. J. Rodseth, J. A. Sellers and H. Tverberg, <a href="http://dx.doi.org/10.1016/j.ejc.2008.10.006">Enumeration of the Degree Sequences of Non-Separable Graphs and Connected Graphs</a>, European Journal of Combinatorics 30 (2009), 1301-1317.

%H Gus Wiseman, <a href="/A147878/a147878.png">Connected multigraphs realizing each of the a(5) = 23 connected multigraphical graphical partitions of 10.</a>

%F a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j).

%F a(n) = A000041(2*n) - 2*A000070(n) + 2*A000041(n) + A000041(n-1). - _Vaclav Kotesovec_, Nov 05 2016

%F a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - _Vaclav Kotesovec_, Nov 05 2016

%e From _Gus Wiseman_, Oct 26 2018: (Start)

%e The a(1) = 1 through a(5) = 23 connected multigraphical partitions:

%e (11) (22) (33) (44) (55)

%e (211) (222) (332) (433)

%e (321) (422) (442)

%e (2211) (431) (532)

%e (3111) (2222) (541)

%e (3221) (3322)

%e (3311) (3331)

%e (4211) (4222)

%e (22211) (4321)

%e (32111) (4411)

%e (41111) (5221)

%e (5311)

%e (22222)

%e (32221)

%e (33211)

%e (42211)

%e (43111)

%e (52111)

%e (222211)

%e (322111)

%e (331111)

%e (421111)

%e (511111)

%e (End)

%p with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60);

%o (PARI) a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ _Michel Marcus_, Nov 04 2016

%Y Cf. A000070, A000569, A007717, A096373, A147877, A209816, A320911, A320921 (no multiedges), A320923.

%K nonn

%O 1,2

%A _James A. Sellers_, Nov 16 2008

%E Offset corrected by _Michel Marcus_, Nov 04 2016