|
|
A007500
|
|
Primes whose reversal in base 10 is also prime (called "palindromic primes" by D. Wells, although that name usually refers to A002385). Also called reversible primes.
(Formerly M0657)
|
|
83
|
|
|
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, 151, 157, 167, 179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373, 383, 389, 701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797, 907, 919, 929, 937, 941, 953, 967, 971, 983, 991, 1009, 1021
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The numbers themselves need not be palindromes.
Number of terms less than 10^n: 4, 13, 56, 260, 1759, 11297, 82439, 618017, 4815213, 38434593, ..., . - Robert G. Wilson v, Jan 08 2015
|
|
REFERENCES
|
Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 131-132
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 134.
|
|
LINKS
|
|
|
MAPLE
|
revdigs:= proc(n)
local L, nL, i;
L:= convert(n, base, 10);
nL:= nops(L);
add(L[i]*10^(nL-i), i=1..nL);
end:
Primes:= select(isprime, {2, seq(2*i+1, i=1..5*10^5)}):
Primes intersect map(revdigs, Primes); # Robert Israel, Aug 14 2014
|
|
MATHEMATICA
|
Select[ Prime[ Range[ 168 ] ], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ # ] ] ] ]& ] (* Zak Seidov, corrected by T. D. Noe *)
Select[Prime[Range[1000]], PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)
|
|
PROG
|
(Magma) [ p: p in PrimesUpTo(1030) | IsPrime(Seqint(Reverse(Intseq(p)))) ]; // Bruno Berselli, Jul 08 2011
(Haskell)
a007500 n = a007500_list !! (n-1)
a007500_list = filter ((== 1) . a010051 . a004086) a000040_list
(Python)
from sympy import prime, isprime
A007500 = [prime(n) for n in range(1, 10**6) if isprime(int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014
|
|
CROSSREFS
|
Cf. A002385 (primes that are palindromes in base 10).
|
|
KEYWORD
|
base,nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Oct 31 2000
Added further terms to the sequence Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 16 2009. Checked by N. J. A. Sloane, Jan 20 2009.
|
|
STATUS
|
approved
|
|
|
|