login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007501
a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2.
(Formerly M0818)
35
2, 3, 6, 21, 231, 26796, 359026206, 64449908476890321, 2076895351339769460477611370186681, 2156747150208372213435450937462082366919951682912789656986079991221
OFFSET
0,1
COMMENTS
Number of nonisomorphic complete binary trees with leaves colored using two colors. - Brendan McKay, Feb 01 2001
With a(0) = 2, a(n+1) is the number of possible distinct sums between any number of elements in {1,...,a(n)}. - Derek Orr, Dec 13 2014
REFERENCES
W. H. Cutler, Subdividing a Box into Completely Incongruent Boxes, J. Rec. Math., 12 (1979), 104-111.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..12
J. C. Kieffer, Hierarchical Type Classes and Their Entropy Functions, in 2011 First International Conference on Data Compression, Communications and Processing, pp. 246-254; Digital Object Identifier: 10.1109/CCP.2011.36.
J. V. Post, Math Pages [wayback copy]
FORMULA
a(n) = A006893(n+1) + 1.
a(n+1) = A000217(a(n)). - Reinhard Zumkeller, Aug 15 2013
a(n) ~ 2 * c^(2^n), where c = 1.34576817070125852633753712522207761954658547520962441996... . - Vaclav Kotesovec, Dec 17 2014
EXAMPLE
Example for depth 2 (the nonisomorphic possibilites are AAAA, AAAB, AABB, ABAB, ABBB, BBBB):
.........o
......../.\
......./...\
......o.....o
...../.\.../.\
..../...\./...\
....A...B.B...B
MATHEMATICA
f[n_Integer] := n(n + 1)/2; NestList[f, 2, 10]
PROG
(PARI) a(n)=if(n<1, 2, a(n-1)*(1+a(n-1))/2)
(Haskell)
a007501 n = a007501_list !! n
a007501_list = iterate a000217 2 -- Reinhard Zumkeller, Aug 15 2013
CROSSREFS
Cf. A117872 (parity), A275342 (2-adic valuation).
Cf. A129440.
Cf. A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).
Sequence in context: A024485 A013155 A303224 * A369996 A227367 A270397
KEYWORD
nonn,easy
STATUS
approved