The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007501 a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2. (Formerly M0818) 34
 2, 3, 6, 21, 231, 26796, 359026206, 64449908476890321, 2076895351339769460477611370186681, 2156747150208372213435450937462082366919951682912789656986079991221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Number of nonisomorphic complete binary trees with leaves colored using two colors. - Brendan McKay, Feb 01 2001 With a(0) = 2, a(n+1) is the number of possible distinct sums between any number of elements in {1,...,a(n)}. - Derek Orr, Dec 13 2014 REFERENCES W. H. Cutler, Subdividing a Box into Completely Incongruent Boxes, J. Rec. Math., 12 (1979), 104-111. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..12 G. L. Honaker, Jr., 41041 (another Prime Pages' Curiosity) J. C. Kieffer, Hierarchical Type Classes and Their Entropy Functions, in 2011 First International Conference on Data Compression, Communications and Processing, pp. 246-254; Digital Object Identifier: 10.1109/CCP.2011.36. J. V. Post, Math Pages [wayback copy] Stephan Wagner, Enumeration of highly balanced trees FORMULA a(n) = A006893(n+1) + 1. a(n+1) = A000217(a(n)). - Reinhard Zumkeller, Aug 15 2013 a(n) ~ 2 * c^(2^n), where c = 1.34576817070125852633753712522207761954658547520962441996... . - Vaclav Kotesovec, Dec 17 2014 EXAMPLE Example for depth 2 (the nonisomorphic possibilites are AAAA, AAAB, AABB, ABAB, ABBB, BBBB): .........o ......../.\ ......./...\ ......o.....o ...../.\.../.\ ..../...\./...\ ....A...B.B...B MATHEMATICA f[n_Integer] := n(n + 1)/2; NestList[f, 2, 10] PROG (PARI) a(n)=if(n<1, 2, a(n-1)*(1+a(n-1))/2) (Haskell) a007501 n = a007501_list !! n a007501_list = iterate a000217 2 -- Reinhard Zumkeller, Aug 15 2013 CROSSREFS Cf. A000217, A006893. Cf. A117872 (parity), A275342 (2-adic valuation). Cf. A129440. Cf. A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9). Sequence in context: A024485 A013155 A303224 * A369996 A227367 A270397 Adjacent sequences: A007498 A007499 A007500 * A007502 A007503 A007504 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Robert G. Wilson v STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 21:03 EST 2024. Contains 370378 sequences. (Running on oeis4.)