login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024485 a(n) = (2/(3*n-1))*binomial(3*n,n). 1
-2, 3, 6, 21, 90, 429, 2184, 11628, 63954, 360525, 2072070, 12096045, 71524440, 427496076, 2578547760, 15675792072, 95951017602, 590842763469, 3657598059570, 22749427475775, 142096423925610, 890949529108485, 5605635937900320, 35380499289211440, 223951032734902200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
For n >= 1, a(n) is the number of lattice paths from (0,0) to (2n,n) using only the steps (1,0) and (0,1) and which do not touch the line y = x/2 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
LINKS
FORMULA
G.f.: 3*g-2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
a(n) = 2*A005809(n)/(3*n-1). - R. J. Mathar, Apr 27 2020
D-finite with recurrence: 2*n*(2*n-1)*a(n) -3*(3*n-2)*(3*n-4)*a(n-1)=0. - R. J. Mathar, Apr 27 2020
a(n) = A006013(n-1)/3 for n >= 1. - Lucas A. Brown, Aug 21 2020
MAPLE
[seq((2/(3*n-1))*binomial(3*n, n), n=0..40)];
MATHEMATICA
Table[2/(3n-1) Binomial[3n, n], {n, 0, 20}] (* Harvey P. Dale, Nov 21 2015 *)
PROG
(PARI) a(n) = (2/(3*n-1))*binomial(3*n, n); \\ Michel Marcus, May 10 2020
CROSSREFS
Sequence in context: A025239 A127294 A012924 * A013155 A303224 A007501
KEYWORD
sign
AUTHOR
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, May 10 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 12:09 EDT 2023. Contains 363042 sequences. (Running on oeis4.)