The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024485 a(n) = (2/(3*n-1))*binomial(3*n,n). 2
 -2, 3, 6, 21, 90, 429, 2184, 11628, 63954, 360525, 2072070, 12096045, 71524440, 427496076, 2578547760, 15675792072, 95951017602, 590842763469, 3657598059570, 22749427475775, 142096423925610, 890949529108485, 5605635937900320, 35380499289211440, 223951032734902200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For n >= 1, a(n) is the number of lattice paths from (0,0) to (2n,n) using only the steps (1,0) and (0,1) and which do not touch the line y = x/2 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 FORMULA G.f.: 3*g-2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011 a(n) = 2*A005809(n)/(3*n-1). - R. J. Mathar, Apr 27 2020 D-finite with recurrence: 2*n*(2*n-1)*a(n) -3*(3*n-2)*(3*n-4)*a(n-1)=0. - R. J. Mathar, Apr 27 2020 a(n) = A006013(n-1)/3 for n >= 1. - Lucas A. Brown, Aug 21 2020 From Karol A. Penson, Dec 18 2023: (Start) G.f.: - (sqrt(1-27*z/4)+i*sqrt(27*z/4))^(2/3) - (sqrt(1-27*z/4)-i*sqrt(27*z/4))^(2/3), where i = sqrt(-1). (G.f.)^3 = G satisfies the cubic equation: -(27*z - 2)^3 + 3*(27*z + 1)*(27*z - 5)*G + 3*(-27*z+2)*G^2 + G^3 = 0. a(n) = Integral_{x=0..27/4} x^n*W(x) dx, for n>=1, where W(x) = -(3^(1/6)*(9+sqrt(3)*sqrt(27-4*x))^(1/3))*(-27*(2^(1/3))*(3^(1/6)) + 3*2^(1/3)*3^(2/3)*sqrt(27-4*x)-2*(9+sqrt(3)*sqrt(27-4*x))^(1/3)*sqrt(27-4*x)*x^(1/3) + 4*2^(1/3)*3^(1/6)*x)/(4*2^(2/3)*Pi*sqrt(27-4*x)*x^(5/3)), for x in (0, 27/4). For n=0, Integral_{x=0..27/4} W(x) dx diverges and is not suited to reproduce a(0). This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End) MAPLE [seq((2/(3*n-1))*binomial(3*n, n), n=0..40)]; MATHEMATICA Table[2/(3n-1) Binomial[3n, n], {n, 0, 20}] (* Harvey P. Dale, Nov 21 2015 *) PROG (PARI) a(n) = (2/(3*n-1))*binomial(3*n, n); \\ Michel Marcus, May 10 2020 CROSSREFS Sequence in context: A025239 A127294 A012924 * A013155 A303224 A007501 Adjacent sequences: A024482 A024483 A024484 * A024486 A024487 A024488 KEYWORD sign AUTHOR Clark Kimberling EXTENSIONS Terms a(21) and beyond from Andrew Howroyd, May 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 06:40 EDT 2024. Contains 373663 sequences. (Running on oeis4.)