|
|
A024485
|
|
a(n) = (2/(3*n-1))*binomial(3*n,n).
|
|
1
|
|
|
-2, 3, 6, 21, 90, 429, 2184, 11628, 63954, 360525, 2072070, 12096045, 71524440, 427496076, 2578547760, 15675792072, 95951017602, 590842763469, 3657598059570, 22749427475775, 142096423925610, 890949529108485, 5605635937900320, 35380499289211440, 223951032734902200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
For n >= 1, a(n) is the number of lattice paths from (0,0) to (2n,n) using only the steps (1,0) and (0,1) and which do not touch the line y = x/2 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
|
|
LINKS
|
|
|
FORMULA
|
D-finite with recurrence: 2*n*(2*n-1)*a(n) -3*(3*n-2)*(3*n-4)*a(n-1)=0. - R. J. Mathar, Apr 27 2020
|
|
MAPLE
|
[seq((2/(3*n-1))*binomial(3*n, n), n=0..40)];
|
|
MATHEMATICA
|
Table[2/(3n-1) Binomial[3n, n], {n, 0, 20}] (* Harvey P. Dale, Nov 21 2015 *)
|
|
PROG
|
(PARI) a(n) = (2/(3*n-1))*binomial(3*n, n); \\ Michel Marcus, May 10 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|