This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007498 Unique period lengths of primes mentioned in A007615. (Formerly M0592) 11
 1, 2, 3, 4, 9, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 294, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24. LINKS Ray Chandler, Table of n, a(n) for n = 1..106 Chris K. Caldwell, Unique (period) primes and the factorization of cyclotomic polynomials minus one, Mathematica Japonica, 26 (1997), 189-195. C. K. Caldwell & H. Dubner, Unique-Period Primes, Table 2 in Journal of Recreational Mathematics 29(1) 46 1998. R. G. Wilson, V, Notes, n.d. MATHEMATICA lst={1}; Do[p=Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], AppendTo[lst, n]], {n, 3000}]; lst (* T. D. Noe, Sep 08 2005 *) PROG (PARI) isok(n) = if (n==1, 1, my(p = polcyclo(n, 10)); isprime(p/gcd(p, n))); \\ Michel Marcus, Jun 20 2018 CROSSREFS Cf. A007615, A002371, A048595, A006883, A007732, A051626. Sequence in context: A250483 A294485 A084368 * A073338 A200260 A190119 Adjacent sequences:  A007495 A007496 A007497 * A007499 A007500 A007501 KEYWORD nonn,nice,base AUTHOR EXTENSIONS More terms from T. D. Noe, Sep 08 2005 a(48)-a(52) from Ray Chandler, Jul 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 10:05 EDT 2019. Contains 326149 sequences. (Running on oeis4.)