OFFSET
1,7
COMMENTS
Essentially same as A007732.
For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Project Euler, Reciprocal cycles: Problem 26
Eric Weisstein's World of Mathematics, Repeating Decimal
FORMULA
a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007
EXAMPLE
From M. F. Hasler, Dec 14 2015: (Start)
a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion.
a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1.
a(7) = 6 because 1/7 = 0.{142857}* with a period of 6.
a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16.
a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End)
MAPLE
A051626 := proc(n) local lpow, mpow ;
if isA003592(n) then
RETURN(0) ;
else
lpow:=1 ;
while true do
for mpow from lpow-1 to 0 by -1 do
if (10^lpow-10^mpow) mod n =0 then
RETURN(lpow-mpow) ;
fi ;
od ;
lpow := lpow+1 ;
od ;
fi ;
end: # R. J. Mathar, Oct 19 2006
MATHEMATICA
r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]];
d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i, 1, 90}] (* Hans Havermann, Oct 19 2006 *)
fd[n_] := Block[{q}, q = Last[First[RealDigits[1/n]]]; If[IntegerQ[q], q = {}]; Length[q]]; Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *)
Table[Length[RealDigits[1/n][[1, -1]]], {n, 90}] (* Harvey P. Dale, Jul 03 2011 *)
PROG
(PARI) A051626(n)=if(1<n/=5^valuation(n, 5)<<valuation(n, 2), znorder(Mod(10, n)), 0) \\ M. F. Hasler, Dec 14 2015
(Python)
def A051626(n):
if isA003592(n):
return 0
else:
lpow=1
while True:
for mpow in range(lpow-1, -1, -1):
if (10**lpow-10**mpow) % n == 0:
return lpow-mpow
lpow += 1 # Kenneth Myers, May 06 2016
(Python)
from sympy import multiplicity, n_order
def A051626(n): return 0 if (m:=(n>>(~n & n-1).bit_length())//5**multiplicity(5, n)) == 1 else n_order(10, m) # Chai Wah Wu, Aug 11 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers
STATUS
approved