|
|
A051624
|
|
12-gonal (or dodecagonal) numbers: a(n) = n*(5*n-4).
|
|
39
|
|
|
0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Sequence found by reading the line from 0, in the direction 0, 12, ... and the parallel line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 18 2012
Starting with offset 1, this is the binomial transform of (1, 11, 10, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015
a(n+1) is the sum of the odd numbers from 4n+1 to 6n+1. - Wesley Ivan Hurt, Dec 14 2015
For n >= 2, a(n) is the number of intersection points of all unit circles centered on the inner lattice points of an (n+1) X (n+1) square grid. - Wesley Ivan Hurt, Dec 08 2020
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1+9*x)/(1-x)^3.
a(10*a(n) + 46*n + 1) = a(10*a(n) + 46*n) + a(10*n+1). - Vladimir Shevelev, Jan 24 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
Sum_{n>=1} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/8 + 5*log(5)/16 + sqrt(5)*log((1 + sqrt(5))/2)/8 = 1.177956057922663858735173968... . - Vaclav Kotesovec, Apr 27 2016
a(n) + 4*(n-1)^2 = (3*n-2)^2. Let P(k,n) be the n-th k-gonal number. Then, in general, P(4k,n) + (k-1)^2*(n-1)^2 = (k*n-k+1)^2. - Charlie Marion, Feb 04 2020
Product_{n>=2} (1 - 1/a(n)) = 5/6. - Amiram Eldar, Jan 21 2021
a(n) = (3*n-2)^2 - (2*n-2)^2. In general, if we let P(k,n) = the n-th k-gonal number, then P(4k,n) = (k*n-(k-1))^2 - ((k-1)*n-(k-1))^2. - Charlie Marion, Nov 11 2021
|
|
MATHEMATICA
|
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3]}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
Table[n*(5*n - 4), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
|
|
PROG
|
(Magma) [ n eq 1 select 0 else Self(n-1)+10*(n-2)+1: n in [1..43] ]; // Klaus Brockhaus, Nov 20 2008
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|