The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010879 Final digit of n. 149
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls, Mar 19 2001 In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111. a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009 LINKS Table of n, a(n) for n=0..80. Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1). Index entries for sequences related to final digits of numbers FORMULA a(n) = n mod 10. Periodic with period 10. From Hieronymus Fischer, May 31 and Jun 11 2007: (Start) Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1). Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}. G.f.: g(x) = (sum{1<=k<10, k*x^k})/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) ) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ). Also: g(x) = x(9x^10-10x^9+1)/((1-x^10)(1-x)^2). a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)). Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End) a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009 a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011 a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015 MAPLE A010879 := proc(n) n mod 10 ; end proc: # R. J. Mathar, Jul 12 2013 MATHEMATICA Table[10*FractionalPart[n/10], {n, 1, 300}] (* Enrique Pérez Herrero, Jul 30 2009 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 81] (* Ray Chandler, Aug 26 2015 *) PadRight[{}, 100, Range[0, 9]] (* Harvey P. Dale, Oct 04 2021 *) PROG (Sage) [power_mod(n, 5, 10)for n in range(0, 81)] # Zerinvary Lajos, Nov 04 2009 (PARI) a(n)=n%10 \\ Charles R Greathouse IV, Jun 16 2011 (Haskell) a010879 = (`mod` 10) a010879_list = cycle [0..9] -- Reinhard Zumkeller, Mar 26 2012 (Magma) [n mod(10): n in [0..90]]; // Vincenzo Librandi, Jun 17 2015 (Python) def a(n): return n % 10 # Martin Gergov, Oct 17 2022 CROSSREFS Cf. A034948, A059988, A048861, A062808, A086457, A086458. Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015 Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487. Sequence in context: A285094 A134778 A118943 * A179636 A217657 A175419 Adjacent sequences: A010876 A010877 A010878 * A010880 A010881 A010882 KEYWORD nonn,base,easy AUTHOR N. J. A. Sloane EXTENSIONS Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:38 EST 2023. Contains 367699 sequences. (Running on oeis4.)