login
A010881
Simple periodic sequence: n mod 12.
12
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
OFFSET
0,3
COMMENTS
The value of the rightmost digit in the base-12 representation of n. - Hieronymus Fischer, Jun 11 2007
FORMULA
a(n) = n mod 12. Complex representation: a(n)=(1/12)*(1-r^n)*sum{1<=k<12, k*product{1<=m<12,m<>k, (1-r^(n-m))}} where r=exp(Pi/6*i)=(sqrt(3)+i)/2 and i=sqrt(-1). Trigonometric representation: a(n)=(512/3)^2*(sin(n*Pi/12))^2*sum{1<=k<12, k*product{1<=m<12,m<>k, (sin((n-m)*Pi/12))^2}}. G.f.: g(x)=(sum{1<=k<12, k*x^k})/(1-x^12). Also: g(x)=x(11x^12-12x^11+1)/((1-x^12)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 2+2*(floor(n/2)mod 6)=A000035(n)+2*A010875(A004526(n)). Also: a(n)=n mod 3+3*(floor(n/3)mod 4)=A010872(n)+3*A010873(A002264(n)). Also: a(n)=n mod 4+4*(floor(n/4)mod 3)=A010873(n)+4*A010872(A002265(n)). Also: a(n)=n mod 6+6*(floor(n/6)mod 2)=A010875(n)+6*A000035(floor(n/6)). Also: a(n)=n mod 2+2*(floor(n/2)mod 2+4*(floor(n/4)mod 3)=A000035(n)+2*A000035(A004526(n))+4*A010872(A002265(n)). - Hieronymus Fischer, Jun 11 2007
a(A001248(k) + 17) = 6 for k>2. - Reinhard Zumkeller, May 12 2010
a(n) = A034326(n+1)-1. - M. F. Hasler, Sep 25 2014
EXAMPLE
a(27)=3 since 27=12*2+3.
MATHEMATICA
Mod[Range[0, 100], 12] (* Paolo Xausa, Feb 02 2024 *)
PROG
(PARI) A010881(n)=n%12 \\ M. F. Hasler, Sep 25 2014
CROSSREFS
Partial sums: A130490. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487, A130488, A130489.
Sequence in context: A130024 A131232 A297238 * A190600 A053832 A345672
KEYWORD
nonn,easy
AUTHOR
STATUS
approved