login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034326
Hours struck by a clock.
6
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9
OFFSET
1,2
COMMENTS
Period 12: repeat [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
FORMULA
From Wesley Ivan Hurt, Sep 23 2014: (Start)
a(n) = (n-1) mod 12 + 1.
a(n) = a(n-12), n > 12.
G.f.: 11 + 1/(1-x) + x * (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + 10*x^10 + 11*x^11) / (1-x^12). (End)
From M. F. Hasler, Sep 25 2014: (Start)
a(n) = A010881(n-1) + 1.
G.f.: Sum_{k=1..12} k*x^k/(1-x^12). (End)
a(n) = n - 12*floor((n-1)/12). - Mikael Aaltonen, Jan 03 2014
MAPLE
A034326:=n->((n-1) mod 12)+1: seq(A034326(n), n=1..100); # Wesley Ivan Hurt, Sep 23 2014
MATHEMATICA
Table[Mod[n - 1, 12] + 1, {n, 100}] (* Wesley Ivan Hurt, Sep 23 2014 *)
PadRight[{}, 120, Range[12]] (* Harvey P. Dale, Aug 30 2020 *)
PROG
(PARI) A034326(n) = (n-1)%12 + 1 \\ Michael B. Porter, Feb 02 2010
(Haskell) A034326 n = succ (pred n `mod` 12) -- Walt Rorie-Baety, May 18 2012
CROSSREFS
Cf. A010881 (n mod 12).
Sequence in context: A178787 A372822 A297241 * A053833 A167973 A087999
KEYWORD
nonn,easy
AUTHOR
Tae Su Chung (cts32(AT)hanmail.net)
STATUS
approved