This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034326 Hours struck by a clock. 6
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Period 12: repeat [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. LINKS Gordon Hamilton and others, Integer Sequences K-12 (Banff 2015) Gordon Hamilton and others, Additional Notes on Sequences Considered at Banff Conference Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,1). FORMULA a(n) = mod(n-1, 12) + 1; a(n) = a(n-12), n>12; G.f.: 11 + 1/(1-x) + x * (x+2*x^2+3*x^3+4*x^4+5*x^5+6*x^6+7*x^7+8*x^8+9*x^9+10*x^10+11*x^11) / (1-x^12). - Wesley Ivan Hurt, Sep 23 2014 a(n) = A010881(n-1)+1. G.f.: sum_{k=1..12}k*x^k/(1-x^12). - M. F. Hasler, Sep 25 2014 a(n) = n - 12*floor((n-1)/12). - Mikael Aaltonen, Jan 03 2014 MAPLE A034326:=n->((n-1) mod 12)+1: seq(A034326(n), n=1..100); # Wesley Ivan Hurt, Sep 23 2014 MATHEMATICA Table[Mod[n - 1, 12] + 1, {n, 100}] (* Wesley Ivan Hurt, Sep 23 2014 *) PROG (PARI) A034326(n) = (n-1)%12 + 1 \\ Michael B. Porter, Feb 02 2010 (Haskell) A034326 n = succ (pred n `mod` 12) -- Walt Rorie-Baety, May 18 2012 CROSSREFS Cf. A010881 (n mod 12). Sequence in context: A072778 A178787 A297241 * A053833 A167973 A087999 Adjacent sequences:  A034323 A034324 A034325 * A034327 A034328 A034329 KEYWORD nonn,easy AUTHOR Tae Su Chung (cts32(AT)hanmail.net) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 10:03 EDT 2019. Contains 324152 sequences. (Running on oeis4.)