OFFSET
1,2
COMMENTS
(n*a(n+1)^3+1)/(n^3+1) is the smallest integer of the form (n*k^3+1)/(n^3+1). - Benoit Cloitre, May 02 2002
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (n-2)^3 + 2 = A084380(n-2). - Philippe Deléham, Feb 23 2014
a(n+1) = A002061(n)*(n-2) + 3. - Philippe Deléham, Feb 23 2014
G.f.: x*(1-2*x+x^2+6*x^3)/(1-x)^4. - Philippe Deléham, Feb 23 2014
E.g.f.: 6 + (x^3-3*x^2+7*x-6)*exp(x). - Nikolaos Pantelidis, Feb 06 2023
MAPLE
seq( (n-2)^3 +2, n=1..50); # G. C. Greubel, Aug 23 2019
MATHEMATICA
Table[(n-3)(n-2)(n-1)+n, {n, 50}] (* or *) Table[n^3+2, {n, -1, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
CoefficientList[Series[(1 -2x +x^2 +6x^3)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 24 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 3, 10}, 50] (* Harvey P. Dale, Aug 06 2018 *)
PROG
(PARI) a(n)=(n-3)*(n-2)*(n-1)+n \\ Charles R Greathouse IV, Jul 02 2016
(Magma) [(n-2)^3 +2: n in [1..50]]; // G. C. Greubel, Aug 23 2019
(Sage) [(n-2)^3 +2 for n in (1..50)] # G. C. Greubel, Aug 23 2019
(GAP) List([1..50], n-> (n-2)^3 +2); # G. C. Greubel, Aug 23 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Laurence Michaels (guardian(AT)ntplx.net)
EXTENSIONS
Extended and corrected by Erich Friedman
STATUS
approved