login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034324
a(n) = (n-1)*(n-2)*(n-3) + n.
2
1, 2, 3, 10, 29, 66, 127, 218, 345, 514, 731, 1002, 1333, 1730, 2199, 2746, 3377, 4098, 4915, 5834, 6861, 8002, 9263, 10650, 12169, 13826, 15627, 17578, 19685, 21954, 24391, 27002, 29793, 32770, 35939, 39306, 42877, 46658, 50655, 54874, 59321
OFFSET
1,2
COMMENTS
(n*a(n+1)^3+1)/(n^3+1) is the smallest integer of the form (n*k^3+1)/(n^3+1). - Benoit Cloitre, May 02 2002
LINKS
Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
FORMULA
a(n) = (n-2)^3 + 2 = A084380(n-2). - Philippe Deléham, Feb 23 2014
a(n+1) = A002061(n)*(n-2) + 3. - Philippe Deléham, Feb 23 2014
G.f.: x*(1-2*x+x^2+6*x^3)/(1-x)^4. - Philippe Deléham, Feb 23 2014
E.g.f.: 6 + (x^3-3*x^2+7*x-6)*exp(x). - Nikolaos Pantelidis, Feb 06 2023
MAPLE
seq( (n-2)^3 +2, n=1..50); # G. C. Greubel, Aug 23 2019
MATHEMATICA
Table[(n-3)(n-2)(n-1)+n, {n, 50}] (* or *) Table[n^3+2, {n, -1, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
CoefficientList[Series[(1 -2x +x^2 +6x^3)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 24 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 3, 10}, 50] (* Harvey P. Dale, Aug 06 2018 *)
PROG
(PARI) a(n)=(n-3)*(n-2)*(n-1)+n \\ Charles R Greathouse IV, Jul 02 2016
(Magma) [(n-2)^3 +2: n in [1..50]]; // G. C. Greubel, Aug 23 2019
(Sage) [(n-2)^3 +2 for n in (1..50)] # G. C. Greubel, Aug 23 2019
(GAP) List([1..50], n-> (n-2)^3 +2); # G. C. Greubel, Aug 23 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Laurence Michaels (guardian(AT)ntplx.net)
EXTENSIONS
Extended and corrected by Erich Friedman
STATUS
approved