login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286814
Number of matchings in the n-helm graph.
0
2, 3, 10, 29, 82, 227, 618, 1661, 4418, 11651, 30506, 79389, 205522, 529635, 1359434, 3476989, 8865026, 22538755, 57157578, 144615709, 365127634, 920110051, 2314564522, 5812911741, 14576950082, 36503608707, 91294323178, 228049363229, 569017421650, 1418290058723
OFFSET
0,1
COMMENTS
Extended to a(0)-a(2) using the formula.
LINKS
Eric Weisstein's World of Mathematics, Helm Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
FORMULA
a(n) = ((1-sqrt(2))^n*(4-sqrt(2)*n)+(1+sqrt(2))^n*(4+sqrt(2)*n))/4;
a(n) = A002203(n) + n*A000129(n).
a(n) = 4*a(n-1)-2*a(n-2)-4*a(n-3)-a(n-4).
G.f.: (2-5*x+2*x^2+3*x^3)/(-1+2*x+x^2)^2.
MATHEMATICA
Table[1/4 ((1 - Sqrt[2])^n (4 - Sqrt[2] n) + (1 + Sqrt[2])^n (4 + Sqrt[2] n)), {n, 0, 20}] // Expand
Table[LucasL[n, 2] + n Fibonacci[n, 2], {n, 0, 20}]
LinearRecurrence[{4, -2, -4, -1}, {3, 10, 29, 82}, {0, 20}]
CoefficientList[Series[(2 - 5 x + 2 x^2 + 3 x^3)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
CROSSREFS
Sequence in context: A034324 A084380 A363139 * A371607 A338583 A121909
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, May 27 2017
STATUS
approved