|
|
A286816
|
|
Smallest b such that the k consecutive primes starting with prime(n) are all base-b Wieferich primes, i.e., satisfy b^(p-1) == 1 (mod p^2). Square array A(n, k), read by antidiagonals downwards.
|
|
6
|
|
|
5, 17, 8, 449, 26, 7, 557, 226, 18, 18, 19601, 1207, 1207, 148, 3, 132857, 54568, 1451, 606, 239, 19
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Array starts
5, 17, 449, 557, 19601, 132857
8, 26, 226, 1207, 54568, 2006776
7, 18, 1207, 1451, 13543, 296449
18, 148, 606, 13543, 296449, 17134811
3, 239, 3469, 24675, 3414284, 36763941
19, 249, 653, 39016, 14380864, 34998229
|
|
LINKS
|
|
|
EXAMPLE
|
The sequence of base-226 Wieferich primes starts 3, 5, 7, 97, 157, ... Since 226 is the smallest b such that the three consecutive primes starting with prime(2) = 3 are base-b Wieferich primes, A(2, 3) = 226.
|
|
PROG
|
(PARI) primevec(initialp, vecsize) = my(v=[initialp]); while(#v < vecsize, v=concat(v, nextprime(v[#v]+1))); v
a(n, k) = my(v=primevec(prime(n), k), b=2, i=0); while(1, for(x=1, #v, if(Mod(b, v[x]^2)^(v[x]-1)!=1, i++; break)); if(i==0, return(b)); b++; i=0)
array(rows, cols) = for(s=1, rows, for(t=1, cols, print1(a(s, t), ", ")); print(""))
array(5, 6) \\ print 5 X 6 array
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|