login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286816
Smallest b such that the k consecutive primes starting with prime(n) are all base-b Wieferich primes, i.e., satisfy b^(p-1) == 1 (mod p^2). Square array A(n, k), read by antidiagonals downwards.
7
5, 17, 8, 449, 26, 7, 557, 226, 18, 18, 19601, 1207, 1207, 148, 3, 132857, 54568, 1451, 606, 239, 19, 4486949, 2006776, 13543, 13543, 3469, 249, 38, 126664001, 20950343, 296449, 296449, 24675, 653, 423, 28, 2363321449, 230695118, 23250274, 17134811, 3414284, 39016, 5649, 28, 28, 5229752849, 5229752849, 882345432, 741652533, 36763941, 14380864, 217682, 26645, 63, 14
OFFSET
1,1
EXAMPLE
The sequence of base-226 Wieferich primes starts 3, 5, 7, 97, 157, ... Since 226 is the smallest b such that the three consecutive primes starting with prime(2) = 3 are base-b Wieferich primes, A(2, 3) = 226.
Array starts:
n=1: 5, 17, 449, 557, 19601, 132857
n=2: 8, 26, 226, 1207, 54568, 2006776
n=3: 7, 18, 1207, 1451, 13543, 296449
n=4: 18, 148, 606, 13543, 296449, 17134811
n=5: 3, 239, 3469, 24675, 3414284, 36763941
n=6: 19, 249, 653, 39016, 14380864, 34998229
PROG
(PARI) primevec(initialp, vecsize) = my(v=[initialp]); while(#v < vecsize, v=concat(v, nextprime(v[#v]+1))); v
a(n, k) = my(v=primevec(prime(n), k), b=2, i=0); while(1, for(x=1, #v, if(Mod(b, v[x]^2)^(v[x]-1)!=1, i++; break)); if(i==0, return(b)); b++; i=0)
array(rows, cols) = for(s=1, rows, for(t=1, cols, print1(a(s, t), ", ")); print(""))
array(5, 6) \\ print 5 X 6 array
CROSSREFS
Columns: A039678 (k=1), A259075 (k=2), A344827 (k=3), A344828 (k=4), A344829 (k=5), A344830 (k=6), A344831 (k=7), A344832 (k=8).
Cf. A256236 (row n=1), A258787.
Sequence in context: A125636 A355658 A156323 * A276831 A180024 A356403
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, May 27 2017
EXTENSIONS
More terms from Max Alekseyev, Oct 10 2023
STATUS
approved