The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256236 Smallest b > 1 such that the first n primes p (i.e., A000040(1)-A000040(n)) all satisfy b^(p-1) == 1 (mod p^2), i.e., smallest base b larger than 1 such that any member of the set of first n primes is a base-b Wieferich prime. 18
 5, 17, 449, 557, 19601, 132857, 4486949, 126664001, 2363321449, 5229752849, 2486195039249, 16250570614349, 83322586961893, 39699586259362801, 8042447016668335049, 449320365877347849601, 4376479338174582826793 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There might be bases b where prime(n+1) is also a base-b Wieferich prime. This does not affect the membership of b in the sequence. Are there any terms such that a(n) = a(n+1)? Does b exist for all n? All currently known terms satisfy a(n) >= A255901(n). Are there any terms such that a(n) < A255901(n)? If it exists, a(12) > 6*10^12. - Robert Price, Oct 10 2019 a(n) <= prime(n)#^2+1 = A189409(n), since any prime p is a Wieferich prime in base k*p^2+1 for all k. - Jens Kruse Andersen, Dec 20 2020 LINKS Table of n, a(n) for n=1..17. EXAMPLE Values of bases b and the values of first Wieferich primes p to base b: b | p ------------------------------------------------------------------------- 5 | 2, 20771, 40487 ... 17 | 2, 3, 46021, 48947 ... 449 | 2, 3, 5, 1789 ... 557 | 2, 3, 5, 7, 23, 39829 ... 19601 | 2, 3, 5, 7, 11, 23, 47 ... 132857 | 2, 3, 5, 7, 11, 13, 73, 257 ... 4486949 | 2, 3, 5, 7, 11, 13, 17, 89, 197 ... 126664001 | 2, 3, 5, 7, 11, 13, 17, 19, 101, 2789 ... 2363321449 | 2, 3, 5, 7, 11, 13, 17, 19, 23 ... 5229752849 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 881, 2246969 ... 2486195039249 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ... MATHEMATICA b = 2; Table[While[fnd = True; For[i = 1, i <= n, i++, p = Prime[i]; If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False; Break[]]]; b++; ! fnd]; b - 1, {n, 5}] (* Robert Price, Oct 10 2019 *) PROG (PARI) a(n) = my(v=primes(n)); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b))))) CROSSREFS Cf. A255901. Sequence in context: A335313 A318751 A096996 * A070294 A245568 A218378 Adjacent sequences: A256233 A256234 A256235 * A256237 A256238 A256239 KEYWORD nonn,hard,more AUTHOR Felix Fröhlich, Mar 25 2015 EXTENSIONS a(9)-a(11) from Robert Price, Oct 10 2019 a(12)-a(17) from Jens Kruse Andersen, Dec 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 12:58 EDT 2024. Contains 372773 sequences. (Running on oeis4.)