OFFSET
1,1
COMMENTS
There might be bases b where prime(n+1) is also a base-b Wieferich prime. This does not affect the membership of b in the sequence.
Are there any terms such that a(n) = a(n+1)?
Does b exist for all n?
All currently known terms satisfy a(n) >= A255901(n). Are there any terms such that a(n) < A255901(n)?
If it exists, a(12) > 6*10^12. - Robert Price, Oct 10 2019
a(n) <= prime(n)#^2+1 = A189409(n), since any prime p is a Wieferich prime in base k*p^2+1 for all k. - Jens Kruse Andersen, Dec 20 2020
EXAMPLE
Values of bases b and the values of first Wieferich primes p to base b:
b | p
-------------------------------------------------------------------------
5 | 2, 20771, 40487 ...
17 | 2, 3, 46021, 48947 ...
449 | 2, 3, 5, 1789 ...
557 | 2, 3, 5, 7, 23, 39829 ...
19601 | 2, 3, 5, 7, 11, 23, 47 ...
132857 | 2, 3, 5, 7, 11, 13, 73, 257 ...
4486949 | 2, 3, 5, 7, 11, 13, 17, 89, 197 ...
126664001 | 2, 3, 5, 7, 11, 13, 17, 19, 101, 2789 ...
2363321449 | 2, 3, 5, 7, 11, 13, 17, 19, 23 ...
5229752849 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 881, 2246969 ...
2486195039249 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ...
MATHEMATICA
b = 2; Table[While[fnd = True;
For[i = 1, i <= n, i++,
p = Prime[i];
If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False; Break[]]];
b++; ! fnd]; b - 1, {n, 5}] (* Robert Price, Oct 10 2019 *)
PROG
(PARI) a(n) = my(v=primes(n)); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Mar 25 2015
EXTENSIONS
a(9)-a(11) from Robert Price, Oct 10 2019
a(12)-a(17) from Jens Kruse Andersen, Dec 28 2020
STATUS
approved