login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255901
Smallest base b such that there exist exactly n Wieferich primes (primes p satisfying b^(p-1) == 1 (mod p^2)) less than b.
3
5, 17, 19, 116, 99, 361, 1451, 1693, 10768, 13834, 208301, 548291
OFFSET
1,1
FORMULA
For all n a(n) <= A252232(n).
a(n) = A252232(n) iff a(n) is prime.
EXAMPLE
From Robert G. Wilson v, Mar 11 2015: (Start)
n b p
1: 5 {2}
2: 17 {2, 3}
3: 19 {3, 7, 13}
4: 116 {3, 7, 19, 47}
5: 99 {5, 7, 13, 19, 83}
6: 361 {2, 3, 7, 13, 43, 137}
7: 1451 {5, 7, 11, 13, 83, 173, 1259}
8: 1693 {2, 3, 5, 11, 31, 37, 61, 109}
9: 10768 {5, 11, 17, 19, 79, 101, 139, 6343, 10177}
10: 13834 {3, 11, 17, 19, 43, 139, 197, 2437, 5849, 6367}
11: 208301 {2, 5, 29, 47, 59, 113, 661, 8209, 13679, 15679, 55633}
12: 548291 {7, 11, 19, 29, 31, 37, 97, 211, 547, 911, 2069, 28927}
... (End)
MATHEMATICA
f[n_] := Block[{b = 2, p}, While[p = Prime@ Range@ PrimePi[b - 1]; Count[ PowerMod[b, p - 1, p^2], 1] != n, b++]; b]; Array[f, 11] (* Robert G. Wilson v, Mar 11 2015 *)
PROG
(PARI) for(n=1, 10, b=2; while(b > 0, i=0; forprime(p=1, b, if(Mod(b, p^2)^(p-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
(Python)
from itertools import count
from sympy import primerange
def A255901(n):
for b in count(1):
if n == sum(1 for p in primerange(2, b+1) if pow(b, p-1, p**2) == 1):
return b # Chai Wah Wu, May 18 2022
CROSSREFS
Sequence in context: A171255 A304540 A306125 * A098333 A252232 A162862
KEYWORD
nonn,more
AUTHOR
Felix Fröhlich, Mar 10 2015
EXTENSIONS
a(11) from Robert G. Wilson v, Mar 11 2015
a(12) from Robert G. Wilson v, Mar 12 2015
STATUS
approved