OFFSET
1,1
EXAMPLE
From Robert G. Wilson v, Mar 11 2015: (Start)
n b p
1: 5 {2}
2: 17 {2, 3}
3: 19 {3, 7, 13}
4: 116 {3, 7, 19, 47}
5: 99 {5, 7, 13, 19, 83}
6: 361 {2, 3, 7, 13, 43, 137}
7: 1451 {5, 7, 11, 13, 83, 173, 1259}
8: 1693 {2, 3, 5, 11, 31, 37, 61, 109}
9: 10768 {5, 11, 17, 19, 79, 101, 139, 6343, 10177}
10: 13834 {3, 11, 17, 19, 43, 139, 197, 2437, 5849, 6367}
11: 208301 {2, 5, 29, 47, 59, 113, 661, 8209, 13679, 15679, 55633}
12: 548291 {7, 11, 19, 29, 31, 37, 97, 211, 547, 911, 2069, 28927}
... (End)
MATHEMATICA
f[n_] := Block[{b = 2, p}, While[p = Prime@ Range@ PrimePi[b - 1]; Count[ PowerMod[b, p - 1, p^2], 1] != n, b++]; b]; Array[f, 11] (* Robert G. Wilson v, Mar 11 2015 *)
PROG
(PARI) for(n=1, 10, b=2; while(b > 0, i=0; forprime(p=1, b, if(Mod(b, p^2)^(p-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
(Python)
from itertools import count
from sympy import primerange
def A255901(n):
for b in count(1):
if n == sum(1 for p in primerange(2, b+1) if pow(b, p-1, p**2) == 1):
return b # Chai Wah Wu, May 18 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Felix Fröhlich, Mar 10 2015
EXTENSIONS
a(11) from Robert G. Wilson v, Mar 11 2015
a(12) from Robert G. Wilson v, Mar 12 2015
STATUS
approved