login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255899
Decimal expansion of Mrs. Miniver's constant.
2
5, 2, 9, 8, 6, 4, 1, 6, 9, 2, 0, 5, 5, 5, 3, 7, 2, 4, 8, 6, 8, 2, 3, 2, 9, 8, 9, 5, 2, 5, 1, 4, 2, 1, 3, 7, 3, 0, 0, 3, 8, 0, 1, 3, 2, 0, 8, 2, 7, 2, 8, 9, 0, 5, 7, 5, 7, 4, 8, 9, 7, 8, 6, 5, 8, 4, 1, 8, 0, 5, 0, 1, 7, 4, 1, 3, 7, 7, 2, 7, 7, 9, 4, 5, 4, 6, 9, 9, 7, 0, 4, 6, 7, 4, 9, 2, 3, 6, 8, 8, 8, 2, 1, 1, 8
OFFSET
0,1
COMMENTS
This constant is the solution to an elementary problem involving two overlapping circles, known as "Mrs. Miniver's problem" (cf. S. R. Finch, p. 487), the value of the solution being the distance between the centers of the two circles (see the picture by L. A. Graham in A192408).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 487.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
FORMULA
The unique root of the equation 2*arccos(x/2) - (1/2)*x*sqrt(4 - x^2) = 2*Pi/3 in the interval [0,2].
Equals 2*cos(A336082 /2). - Robert FERREOL, Feb 18 2022
EXAMPLE
0.5298641692055537248682329895251421373003801320827289...
MATHEMATICA
d = x /. FindRoot[2*ArcCos[x/2] - (1/2)*x*Sqrt[4 - x^2] == 2*Pi/3, {x, 1/2}, WorkingPrecision -> 105]; RealDigits[d] // First
PROG
(PARI) solve (x=0, 2, 2*acos(x/2) - (1/2)*x*sqrt(4 - x^2) - 2*Pi/3) \\ Michel Marcus, Mar 10 2015
CROSSREFS
Cf. A192408.
Sequence in context: A329986 A097897 A063761 * A348408 A019841 A064582
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved