OFFSET
0,1
COMMENTS
This constant is the solution to an elementary problem involving two overlapping circles, known as "Mrs. Miniver's problem" (cf. S. R. Finch, p. 487), the value of the solution being the distance between the centers of the two circles (see the picture by L. A. Graham in A192408).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 487.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
FORMULA
The unique root of the equation 2*arccos(x/2) - (1/2)*x*sqrt(4 - x^2) = 2*Pi/3 in the interval [0,2].
Equals 2*cos(A336082 /2). - Robert FERREOL, Feb 18 2022
EXAMPLE
0.5298641692055537248682329895251421373003801320827289...
MATHEMATICA
d = x /. FindRoot[2*ArcCos[x/2] - (1/2)*x*Sqrt[4 - x^2] == 2*Pi/3, {x, 1/2}, WorkingPrecision -> 105]; RealDigits[d] // First
PROG
(PARI) solve (x=0, 2, 2*acos(x/2) - (1/2)*x*sqrt(4 - x^2) - 2*Pi/3) \\ Michel Marcus, Mar 10 2015
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Mar 10 2015
STATUS
approved