login
A064582
Real half-period for the Weierstrass elliptic function with invariants g2=0, g3=1.
3
1, 5, 2, 9, 9, 5, 4, 0, 3, 7, 0, 5, 7, 1, 9, 2, 8, 7, 4, 9, 1, 3, 1, 9, 4, 1, 7, 2, 3, 0, 8, 8, 2, 4, 3, 5, 8, 5, 7, 2, 8, 2, 8, 9, 4, 7, 1, 6, 0, 9, 2, 9, 4, 9, 6, 0, 6, 1, 8, 1, 1, 6, 8, 5, 9, 0, 9, 5, 2, 2, 3, 6, 1, 7, 9, 9, 3, 7, 4, 2, 7, 6, 4, 6, 8, 8, 3, 8, 5, 2, 0, 5, 6, 5, 8, 7, 5, 3, 4, 4, 6, 5
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 652.
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.1.1 Weierstrass Pe Function, p. 422.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 652.
Amrik Singh Nimbran, Infinite series for omega-2 constant, 2020.
Eric Weisstein's World of Mathematics, Omega-2 Constant.
FORMULA
Equals Gamma(1/3)^3/(4*Pi).
Also equals 2*2^(1/3)*EllipticK(4*sqrt(3)-7)/(135+78*sqrt(3))^(1/6). - Jean-François Alcover, Jun 18 2014
EXAMPLE
1.5299540370571928749131941723...
MAPLE
s:= convert(evalf(GAMMA(1/3)^3/(4*Pi)/10, 140), string):
seq(parse(s[i+1]), i=1..104); # Alois P. Heinz, Jun 18 2014
MATHEMATICA
First@RealDigits[ Chop[ First@N[ WeierstrassHalfPeriods[ {0, 1} ], 102 ] ] ]
RealDigits[Gamma[1/3]^3/(4 Pi), 10, 100][[1]] (* Jan Mangaldan, Jan 06 2017 *)
PROG
(PARI) gamma(1/3)^3/4/Pi \\ Charles R Greathouse IV, Apr 18 2016
(Magma) C<i> := ComplexField(); [Gamma(1/3)^3/(4*Pi(C))]; // G. C. Greubel, Nov 05 2017
CROSSREFS
Sequence in context: A255899 A348408 A019841 * A197374 A119946 A276610
KEYWORD
nonn,easy,cons
AUTHOR
Eric W. Weisstein, Sep 22 2001
STATUS
approved