login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064579 Inverse permutation to A054082. 2
2, 1, 4, 3, 6, 8, 5, 10, 7, 12, 14, 9, 16, 18, 11, 20, 13, 22, 24, 15, 26, 17, 28, 30, 19, 32, 34, 21, 36, 23, 38, 40, 25, 42, 44, 27, 46, 29, 48, 50, 31, 52, 33, 54, 56, 35, 58, 60, 37, 62, 39, 64, 66, 41, 68, 43, 70, 72, 45, 74, 76, 47, 78, 49, 80, 82, 51, 84, 86, 53, 88, 55 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..72.

Index entries for sequences that are permutations of the natural numbers

MAPLE

A054082 := proc(nmax) local a, k, n, p ; a := [2, 1] ; while nops(a) < nmax do n := nops(a)+1 : k := floor((n+1)/2) ; p := 1; while p in a do p := p+1 ; od ; if n mod 2 = 1 then a := [op(a), p+k-1] ; else a := [op(a), p] ; fi ; od ; RETURN(a) ; end: A064579 := proc(a054082) local a, n, ainv ; n := 1; a := [] ; while member(n, a054082, 'ainv') do a := [op(a), ainv] ; n := n+1; od; RETURN(a) ; end: a054082 := A054082(200) : a064579 := A064579(a054082) : print(op(a064579)) ; # R. J. Mathar, Jun 27 2007

MATHEMATICA

a[n_] := If[OddQ[n], Floor[((n+1)/2 - 1) GoldenRatio] + (n+1)/2 + 1, Floor[(n/2 - 1) GoldenRatio] + 2]; a[2] = 1;

Sort[Array[{a[#], #}&, 100]][[All, 2]] (* Jean-Fran├žois Alcover, Apr 01 2020 *)

CROSSREFS

Sequence in context: A035552 A339372 A114862 * A277376 A105361 A125154

Adjacent sequences:  A064576 A064577 A064578 * A064580 A064581 A064582

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 16 2001

EXTENSIONS

Corrected and extended by R. J. Mathar, Jun 27 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)