login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197374
Pi(3): fundamental real period of the Dixonian elliptic functions sm(z) and cm(z).
1
5, 2, 9, 9, 9, 1, 6, 2, 5, 0, 8, 5, 6, 3, 4, 9, 8, 7, 1, 9, 4, 1, 0, 6, 8, 4, 9, 8, 9, 4, 5, 3, 1, 6, 1, 0, 7, 7, 1, 5, 6, 0, 5, 6, 1, 4, 6, 0, 7, 6, 7, 2, 5, 9, 0, 3, 8, 0, 7, 1, 5, 7, 2, 5, 5, 0, 6, 3, 5, 9, 0, 0, 5, 1, 8, 4, 3, 2, 3, 7, 4, 0, 8, 1, 6, 4, 6, 0, 9, 8, 0, 0, 0, 0, 1, 5, 0, 7, 6, 1, 6, 5
OFFSET
1,1
COMMENTS
Pi(3) = 5.29991 62508 56349 87194 ... is the real period of the doubly-periodic Dixonian elliptic functions sm(z) (A104133) and cm(z) (A104134): sm(z+Pi(3)) = sm(z); cm(z+Pi(3)) = cm(z). The other period equals Pi(3)*w, where w = exp(2*I*Pi/3).
REFERENCES
A. C. Dixon, On the doubly periodic functions arising out of the curve x^3 + y^3 - 3 alpha xy = 1, Quarterly J. Pure Appl. Math. 24 (1890), 167-233.
LINKS
E. van Fossen Conrad and P. Flajolet The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion, arXiv:math/0507268v1 [math.CO], Sem. Lothar. Combin. 54 (2005/06), Art. B54g, 44 pp.
FORMULA
Pi(3) = 3*int {0..1} 1/(1-t^3)^(2/3) dt = B(1/3,1/3) = Gamma(1/3)^2/Gamma(2/3) = sqrt(3)/(2*Pi)*Gamma(1/3)^3.
EXAMPLE
5.299916250856349...
MATHEMATICA
Sqrt[3]/(2*Pi)*Gamma[1/3]^3 // N[#, 103]& // RealDigits // First (* Jean-François Alcover, Jan 21 2013 *)
PROG
(PARI) sqrt(3)/(2*Pi)*gamma(1/3)^3 \\ Charles R Greathouse IV, Mar 04, 2012
CROSSREFS
Sequence in context: A348408 A019841 A064582 * A119946 A276610 A065270
KEYWORD
easy,nonn,cons
AUTHOR
Peter Bala, Mar 04 2012
STATUS
approved