Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 13 2013 01:49:57
%S 5,2,9,9,9,1,6,2,5,0,8,5,6,3,4,9,8,7,1,9,4,1,0,6,8,4,9,8,9,4,5,3,1,6,
%T 1,0,7,7,1,5,6,0,5,6,1,4,6,0,7,6,7,2,5,9,0,3,8,0,7,1,5,7,2,5,5,0,6,3,
%U 5,9,0,0,5,1,8,4,3,2,3,7,4,0,8,1,6,4,6,0,9,8,0,0,0,0,1,5,0,7,6,1,6,5
%N Pi(3): fundamental real period of the Dixonian elliptic functions sm(z) and cm(z).
%C Pi(3) = 5.29991 62508 56349 87194 ... is the real period of the doubly-periodic Dixonian elliptic functions sm(z) (A104133) and cm(z) (A104134): sm(z+Pi(3)) = sm(z); cm(z+Pi(3)) = cm(z). The other period equals Pi(3)*w, where w = exp(2*I*Pi/3).
%D A. C. Dixon, On the doubly periodic functions arising out of the curve x^3 + y^3 - 3 alpha xy = 1, Quarterly J. Pure Appl. Math. 24 (1890), 167-233.
%H E. van Fossen Conrad and P. Flajolet <a href="http://arxiv.org/abs/math/0507268">The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion</a>, arXiv:math/0507268v1 [math.CO], Sem. Lothar. Combin. 54 (2005/06), Art. B54g, 44 pp.
%F Pi(3) = 3*int {0..1} 1/(1-t^3)^(2/3) dt = B(1/3,1/3) = Gamma(1/3)^2/Gamma(2/3) = sqrt(3)/(2*Pi)*Gamma(1/3)^3.
%e 5.299916250856349...
%t Sqrt[3]/(2*Pi)*Gamma[1/3]^3 // N[#, 103]& // RealDigits // First (* _Jean-François Alcover_, Jan 21 2013 *)
%o (PARI) sqrt(3)/(2*Pi)*gamma(1/3)^3 \\ _Charles R Greathouse IV_, Mar 04, 2012
%Y Cf. A104133, A104134.
%K easy,nonn,cons
%O 1,1
%A _Peter Bala_, Mar 04 2012