login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest base b such that there exist exactly n Wieferich primes (primes p satisfying b^(p-1) == 1 (mod p^2)) less than b.
3

%I #25 Nov 13 2024 05:38:11

%S 5,17,19,116,99,361,1451,1693,10768,13834,208301,548291

%N Smallest base b such that there exist exactly n Wieferich primes (primes p satisfying b^(p-1) == 1 (mod p^2)) less than b.

%F For all n a(n) <= A252232(n).

%F a(n) = A252232(n) iff a(n) is prime.

%e From _Robert G. Wilson v_, Mar 11 2015: (Start)

%e n b p

%e 1: 5 {2}

%e 2: 17 {2, 3}

%e 3: 19 {3, 7, 13}

%e 4: 116 {3, 7, 19, 47}

%e 5: 99 {5, 7, 13, 19, 83}

%e 6: 361 {2, 3, 7, 13, 43, 137}

%e 7: 1451 {5, 7, 11, 13, 83, 173, 1259}

%e 8: 1693 {2, 3, 5, 11, 31, 37, 61, 109}

%e 9: 10768 {5, 11, 17, 19, 79, 101, 139, 6343, 10177}

%e 10: 13834 {3, 11, 17, 19, 43, 139, 197, 2437, 5849, 6367}

%e 11: 208301 {2, 5, 29, 47, 59, 113, 661, 8209, 13679, 15679, 55633}

%e 12: 548291 {7, 11, 19, 29, 31, 37, 97, 211, 547, 911, 2069, 28927}

%e ... (End)

%t f[n_] := Block[{b = 2, p}, While[p = Prime@ Range@ PrimePi[b - 1]; Count[ PowerMod[b, p - 1, p^2], 1] != n, b++]; b]; Array[f, 11] (* _Robert G. Wilson v_, Mar 11 2015 *)

%o (PARI) for(n=1, 10, b=2; while(b > 0, i=0; forprime(p=1, b, if(Mod(b, p^2)^(p-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))

%o (Python)

%o from itertools import count

%o from sympy import primerange

%o def A255901(n):

%o for b in count(1):

%o if n == sum(1 for p in primerange(2,b+1) if pow(b,p-1,p**2) == 1):

%o return b # _Chai Wah Wu_, May 18 2022

%Y Cf. A252232, A255885.

%K nonn,more

%O 1,1

%A _Felix Fröhlich_, Mar 10 2015

%E a(11) from _Robert G. Wilson v_, Mar 11 2015

%E a(12) from _Robert G. Wilson v_, Mar 12 2015