login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258787
Triangle read by rows: T(n, k) = smallest base b > 1 such that p = prime(n) is the k-th base-b Wieferich prime for k = 1, 2, 3, ..., n.
2
5, 8, 17, 7, 26, 449, 30, 18, 197, 557, 3, 9, 118, 1207, 19601, 22, 146, 19, 361, 8201, 132857, 38, 40, 224, 249, 4625, 296449, 4486949, 54, 28, 68, 99, 4033, 4625, 296449, 126664001, 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449, 14, 41, 374, 1745, 901, 46826, 217682, 9312157, 758427193, 5229752849
OFFSET
1,1
EXAMPLE
T(4, 3) = 197, because 197 is the smallest base b such that p = prime(4) = 7 is the 3rd base-b Wieferich prime.
Triangle T(n, k) starts:
5;
8, 17;
7, 26, 449;
30, 18, 197, 557;
3, 9, 118, 1207, 19601;
22, 146, 19, 361, 8201, 132857;
38, 40, 224, 249, 4625, 296449, 4486949;
54, 28, 68, 99, 4033, 4625, 296449, 126664001;
42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449;
PROG
(PARI) nextwiefbase(n, a) = a++; while(Mod(a, n^2)^(n-1)!=1, a++); a
wiefrank(n, a) = i=0; forprime(p=1, n, if(Mod(a, p^2)^(p-1)==1, i++)); i
trianglerows(n) = i=1; while(i <= n, p=prime(i); for(k=1, i, b=2; while(wiefrank(p, b)!=k, b=nextwiefbase(p, b)); print1(b, ", ")); print(""); i++)
trianglerows(9) \\ print first nine rows of the triangle
CROSSREFS
Cf. A256236 (diagonal). A286816.
Sequence in context: A153363 A154119 A196387 * A185103 A314566 A096545
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Jun 10 2015
EXTENSIONS
More terms from Max Alekseyev, Oct 14 2023
STATUS
approved