login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258788
a(n) = [x^n] Product_{k=1..n} 1/(x^k*(1-x^k)).
10
1, 1, 3, 12, 47, 192, 811, 3539, 15765, 71362, 327748, 1524081, 7161629, 33958506, 162312471, 781305581, 3784573140, 18435578714, 90261022638, 443956543235, 2192796266004, 10872208762458, 54095648185434, 270029668955605, 1351943521270155, 6787479872751732
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n / n^2, where d = A258234 = 5.40087190411815415246609111910427005202943771019167057093170601448448... = r^2/(r-1), where r is the root of the equation polylog(2, 1-r) + log(r)^2 = 0, c = 2.578341962163260914344332458898614289944... .
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(n+3)/2, n), n=0..30);
MATHEMATICA
Table[SeriesCoefficient[1/Product[x^k*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(n+3)/2}], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 10 2015
STATUS
approved