login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088132
a(n) equals the square of the n-th partial sum added to twice the n-th partial sum of the squares, divided by a(n-1), for all n>1, with a(0)=1, a(1)=3.
3
1, 3, 12, 47, 185, 728, 2865, 11275, 44372, 174623, 687217, 2704496, 10643361, 41886227, 164840412, 648718287, 2552986921, 10047107272, 39539710801, 155605856283, 612376317860, 2409965560639, 9484256386273, 37324649227232
OFFSET
0,2
FORMULA
a(n) = 4*a(n-1) - a(n-3) for n>3.
G.f.: (1-x)/(1-4*x+x^3).
G.f.: 1/(x - x^2*Sum_{n>=0} A030186(n)*x^n) - 1/x.
MAPLE
seq(coeff(series((1-x)/(1-4*x+x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
MATHEMATICA
LinearRecurrence[{4, 0, -1}, {1, 3, 12}, 30] (* or *) CoefficientList[Series[ (1-x)/(1-4x+x^3), {x, 0, 30}], x] (* Harvey P. Dale, Jun 24 2011 *)
PROG
(PARI) {a(n)=if(n==0, 1, if(n==1, 3, (sum(k=0, n-1, a(k))^2 + 2*sum(k=0, n-1, a(k)^2))/a(n-1)))}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 20 2014
(PARI) Vec( (1-x)/(1-4*x+x^3) + O(x^66) ) \\ Joerg Arndt, Feb 16 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-4*x+x^3) )); // G. C. Greubel, Oct 26 2019
(Sage)
def A088132_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-4*x+x^3)).list()
A088132_list(30) # G. C. Greubel, Oct 26 2019
(GAP) a:=[1, 3, 12];; for n in [4..30] do a[n]:=34a[n-1]-a[n-3]; od; a; # G. C. Greubel, Oct 26 2019
CROSSREFS
Sequence in context: A176310 A368030 A077829 * A122450 A179648 A258788
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Sep 19 2003
STATUS
approved