login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) equals the square of the n-th partial sum added to twice the n-th partial sum of the squares, divided by a(n-1), for all n>1, with a(0)=1, a(1)=3.
3

%I #32 Sep 08 2022 08:45:11

%S 1,3,12,47,185,728,2865,11275,44372,174623,687217,2704496,10643361,

%T 41886227,164840412,648718287,2552986921,10047107272,39539710801,

%U 155605856283,612376317860,2409965560639,9484256386273,37324649227232

%N a(n) equals the square of the n-th partial sum added to twice the n-th partial sum of the squares, divided by a(n-1), for all n>1, with a(0)=1, a(1)=3.

%H Vincenzo Librandi, <a href="/A088132/b088132.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-1).

%F a(n) = 4*a(n-1) - a(n-3) for n>3.

%F G.f.: (1-x)/(1-4*x+x^3).

%F G.f.: 1/(x - x^2*Sum_{n>=0} A030186(n)*x^n) - 1/x.

%p seq(coeff(series((1-x)/(1-4*x+x^3), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 26 2019

%t LinearRecurrence[{4,0,-1}, {1,3,12}, 30] (* or *) CoefficientList[Series[ (1-x)/(1-4x+x^3), {x,0,30}], x] (* _Harvey P. Dale_, Jun 24 2011 *)

%o (PARI) {a(n)=if(n==0,1, if(n==1,3, (sum(k=0, n-1, a(k))^2 + 2*sum(k=0, n-1, a(k)^2))/a(n-1)))}

%o for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Feb 20 2014

%o (PARI) Vec( (1-x)/(1-4*x+x^3) + O(x^66) ) \\ _Joerg Arndt_, Feb 16 2014

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-4*x+x^3) )); // _G. C. Greubel_, Oct 26 2019

%o (Sage)

%o def A088132_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P((1-x)/(1-4*x+x^3)).list()

%o A088132_list(30) # _G. C. Greubel_, Oct 26 2019

%o (GAP) a:=[1,3,12];; for n in [4..30] do a[n]:=34a[n-1]-a[n-3]; od; a; # _G. C. Greubel_, Oct 26 2019

%Y Cf. A030186, A088131.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, Sep 19 2003