login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179648
Expansion of (1/(1+4x-2x^2))*c(x/(1+4x-2x^2)), c(x) the g.f. of A000108.
1
1, -3, 12, -47, 190, -778, 3224, -13475, 56710, -239986, 1020200, -4353430, 18636908, -80004388, 344264624, -1484499811, 6413133638, -27750688914, 120258432264, -521833284514, 2267084792708, -9859984425324, 42925569027408
OFFSET
0,2
COMMENTS
Hankel transform is the (4,5) Somos-4 sequence A174404.
LINKS
FORMULA
G.f.: (1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2))) = (sqrt(2*x^2-4*x-1)-sqrt(2*x^2-1))/(2*x*sqrt(2*x^2-4*x-1));
G.f.: 1/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1-... (continued fraction).
Conjecture: (n+1)*a(n) +2*(2n+1)*a(n-1) +4*(1-n)*a(n-2) +4*(5-2n)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ (-1)^n * (2 + sqrt(6))^(n+1) / (2^(3/4) * 3^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 15 2018
MATHEMATICA
CoefficientList[Series[(1/(2*x))*(1 - Sqrt[(1-2*x^2)/(1+4*x-2*x^2)]), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2)))) \\ G. C. Greubel, Aug 14 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1/(2*x))*(1-Sqrt((1-2*x^2)/(1+4*x-2*x^2))))); // G. C. Greubel, Aug 14 2018
CROSSREFS
Sequence in context: A077829 A088132 A122450 * A258788 A100389 A151163
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jan 09 2011
STATUS
approved