OFFSET
1,8
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
FORMULA
O.g.f. for column k: B(A(x)) where A(x) = x/(1-x)-x^k and B(x) = 1/(1-x).
EXAMPLE
T(4,2) = 4 because there are four compositions of 4 with no part equal to two: 4, 3+1, 1+3, 1+1+1+1.
Array starts as:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 2, 3, 4, 4, 4, 4, 4, 4, 4, ...
2, 4, 6, 7, 8, 8, 8, 8, 8, 8, ...
3, 7, 11, 14, 15, 16, 16, 16, 16, 16, ...
5, 12, 21, 27, 30, 31, 32, 32, 32, 32, ...
8, 21, 39, 52, 59, 62, 63, 64, 64, 64, ...
13, 37, 73, 101, 116, 123, 126, 127, 128, 128, ...
21, 65, 136, 195, 228, 244, 251, 254, 255, 256, ...
34, 114, 254, 377, 449, 484, 500, 507, 510, 511, ...
MAPLE
T:= proc(n, k) option remember;
`if`(n=0, 1, add(`if`(j=k, 0, T(n-j, k)), j=1..n))
end:
seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Oct 23 2011
MATHEMATICA
Transpose[Table[Table[Length[Select[Level[Map[Permutations, IntegerPartitions[n]], {2}], FreeQ[#, i] &]], {n, 1, 10}], {i, 1, 10}]] // Grid
(* second program: *)
a = x/(1 - x) - x^n; Transpose[Table[Rest[CoefficientList[Series[1/(1 - a), {x, 0, 10}], x]], {n, 1, 10}]] // Grid
(* Program translated from Maple: *)
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n-j, k]], {j, 1, n}]];
Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 09 2011
EXTENSIONS
Corrected and extended by Alois P. Heinz, Oct 23 2011
STATUS
approved