login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179647
Rectangular array read by antidiagonals: T(n,k) is the number of compositions (ordered partitions) of n in which no part (summand) is equal to k.
1
0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 3, 1, 2, 4, 6, 7, 5, 1, 2, 4, 7, 11, 12, 8, 1, 2, 4, 8, 14, 21, 21, 13, 1, 2, 4, 8, 15, 27, 39, 37, 21, 1, 2, 4, 8, 16, 30, 52, 73, 65, 34, 1, 2, 4, 8, 16, 31, 59, 101, 136, 114, 55, 1, 2, 4, 8, 16, 32, 62, 116, 195, 254, 200, 89
OFFSET
1,8
LINKS
FORMULA
O.g.f. for column k: B(A(x)) where A(x) = x/(1-x)-x^k and B(x) = 1/(1-x).
EXAMPLE
T(4,2) = 4 because there are four compositions of 4 with no part equal to two: 4, 3+1, 1+3, 1+1+1+1.
Array starts as:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 2, 3, 4, 4, 4, 4, 4, 4, 4, ...
2, 4, 6, 7, 8, 8, 8, 8, 8, 8, ...
3, 7, 11, 14, 15, 16, 16, 16, 16, 16, ...
5, 12, 21, 27, 30, 31, 32, 32, 32, 32, ...
8, 21, 39, 52, 59, 62, 63, 64, 64, 64, ...
13, 37, 73, 101, 116, 123, 126, 127, 128, 128, ...
21, 65, 136, 195, 228, 244, 251, 254, 255, 256, ...
34, 114, 254, 377, 449, 484, 500, 507, 510, 511, ...
MAPLE
T:= proc(n, k) option remember;
`if`(n=0, 1, add(`if`(j=k, 0, T(n-j, k)), j=1..n))
end:
seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Oct 23 2011
MATHEMATICA
Transpose[Table[Table[Length[Select[Level[Map[Permutations, IntegerPartitions[n]], {2}], FreeQ[#, i] &]], {n, 1, 10}], {i, 1, 10}]] // Grid
(* second program: *)
a = x/(1 - x) - x^n; Transpose[Table[Rest[CoefficientList[Series[1/(1 - a), {x, 0, 10}], x]], {n, 1, 10}]] // Grid
(* Program translated from Maple: *)
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n-j, k]], {j, 1, n}]];
Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A261904 A297030 A266348 * A029330 A132225 A263923
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 09 2011
EXTENSIONS
Corrected and extended by Alois P. Heinz, Oct 23 2011
STATUS
approved