Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:54
%S 1,-3,12,-47,190,-778,3224,-13475,56710,-239986,1020200,-4353430,
%T 18636908,-80004388,344264624,-1484499811,6413133638,-27750688914,
%U 120258432264,-521833284514,2267084792708,-9859984425324,42925569027408
%N Expansion of (1/(1+4x-2x^2))*c(x/(1+4x-2x^2)), c(x) the g.f. of A000108.
%C Hankel transform is the (4,5) Somos-4 sequence A174404.
%H G. C. Greubel, <a href="/A179648/b179648.txt">Table of n, a(n) for n = 0..1540</a>
%F G.f.: (1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2))) = (sqrt(2*x^2-4*x-1)-sqrt(2*x^2-1))/(2*x*sqrt(2*x^2-4*x-1));
%F G.f.: 1/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1+4x-2x^2-x/(1-x/(1-... (continued fraction).
%F Conjecture: (n+1)*a(n) +2*(2n+1)*a(n-1) +4*(1-n)*a(n-2) +4*(5-2n)*a(n-3) +4*(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 17 2011
%F a(n) ~ (-1)^n * (2 + sqrt(6))^(n+1) / (2^(3/4) * 3^(1/4) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Aug 15 2018
%t CoefficientList[Series[(1/(2*x))*(1 - Sqrt[(1-2*x^2)/(1+4*x-2*x^2)]), {x, 0, 50}], x] (* _G. C. Greubel_, Aug 14 2018 *)
%o (PARI) x='x+O('x^50); Vec((1/(2*x))*(1-sqrt((1-2*x^2)/(1+4*x-2*x^2)))) \\ _G. C. Greubel_, Aug 14 2018
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1/(2*x))*(1-Sqrt((1-2*x^2)/(1+4*x-2*x^2))))); // _G. C. Greubel_, Aug 14 2018
%Y Cf. A000108, A174404.
%K sign,easy
%O 0,2
%A _Paul Barry_, Jan 09 2011