login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of matchings in the n-helm graph.
0

%I #50 Jan 08 2020 09:27:26

%S 2,3,10,29,82,227,618,1661,4418,11651,30506,79389,205522,529635,

%T 1359434,3476989,8865026,22538755,57157578,144615709,365127634,

%U 920110051,2314564522,5812911741,14576950082,36503608707,91294323178,228049363229,569017421650,1418290058723

%N Number of matchings in the n-helm graph.

%C Extended to a(0)-a(2) using the formula.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HelmGraph.html">Helm Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4,-1).

%F a(n) = ((1-sqrt(2))^n*(4-sqrt(2)*n)+(1+sqrt(2))^n*(4+sqrt(2)*n))/4;

%F a(n) = A002203(n) + n*A000129(n).

%F a(n) = 4*a(n-1)-2*a(n-2)-4*a(n-3)-a(n-4).

%F G.f.: (2-5*x+2*x^2+3*x^3)/(-1+2*x+x^2)^2.

%t Table[1/4 ((1 - Sqrt[2])^n (4 - Sqrt[2] n) + (1 + Sqrt[2])^n (4 + Sqrt[2] n)), {n, 0, 20}] // Expand

%t Table[LucasL[n, 2] + n Fibonacci[n, 2], {n, 0, 20}]

%t LinearRecurrence[{4, -2, -4, -1}, {3, 10, 29, 82}, {0, 20}]

%t CoefficientList[Series[(2 - 5 x + 2 x^2 + 3 x^3)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]

%K nonn,easy

%O 0,1

%A _Eric W. Weisstein_, May 27 2017