login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034322
McKay-Thompson series of class 71A for Monster.
2
1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 7, 8, 10, 11, 13, 14, 17, 19, 22, 24, 29, 31, 36, 40, 46, 50, 58, 63, 72, 79, 89, 98, 111, 121, 136, 149, 167, 182, 204, 222, 247, 270, 299, 326, 362, 393, 434, 473, 521, 566, 623, 676, 742, 806, 882, 956, 1047, 1133
OFFSET
-1,7
COMMENTS
Also McKay-Thompson series of class 71B for Monster. - Michel Marcus, Feb 19 2014
LINKS
I. Chen and N. Yui, Singular values of Thompson series. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
a(n) ~ exp(4*Pi*sqrt(n/71)) / (sqrt(2) * 71^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2018
EXAMPLE
T71A = 1/q + q + q^2 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
MATHEMATICA
QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; G[x_] := f[-x^2, -x^3]/f[-x, -x^2]; H[x_] := f[-x, -x^4]/f[-x, -x^2]; a:= CoefficientList[Series[G[x^71]*H[x] - x^14*H[x^71]*G[x], {x, 0, 80}], x]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jul 05 2018 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved