login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034319
McKay-Thompson series of class 13A for the Monster group with a(0) = 0.
3
1, 0, 12, 28, 66, 132, 258, 468, 843, 1428, 2406, 3900, 6253, 9780, 15144, 22980, 34599, 51300, 75430, 109584, 158052, 225676, 320082, 450216, 629329, 873444, 1205514, 1653364, 2256087, 3061620, 4135280, 5557980, 7438170, 9910132
OFFSET
-1,3
COMMENTS
Expansion of Hauptmodul for Gamma_0(13)+.
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
I. Chen and N. Yui, Singular values of Thompson series. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.
FORMULA
a(n) ~ exp(4*Pi*sqrt(n/13)) / (sqrt(2) * 13^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
T13A = 1/q + 12*q + 28*q^2 + 66*q^3 + 132*q^4 + 258*q^5 + 468*q^6 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[2 + (eta[q]/eta[q^13])^2 + 13*(eta[q^13]/eta[q])^2, {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, May 04 2018 *)
PROG
(PARI) q='q+O('q^30); Vec(2 + (eta(q)/eta(q^13))^2/q + 13*q*(eta(q^13)/eta(q))^2) \\ G. C. Greubel, May 04 2018
CROSSREFS
See also A034318.
Sequence in context: A126195 A248547 A164533 * A097427 A039366 A043189
KEYWORD
nonn
STATUS
approved