login
A164533
a(n) = sigma(sigma(n))*sigma(n).
1
1, 12, 28, 56, 72, 336, 120, 360, 182, 702, 336, 1568, 336, 1440, 1440, 992, 702, 2184, 840, 4032, 2016, 3276, 1440, 10080, 992, 4032, 3600, 6720, 2160, 14040, 2016, 6552, 5952, 6480, 5952, 10192, 2280, 10080, 6720, 21060, 4032, 24192, 3696, 18816, 13104
OFFSET
1,2
FORMULA
a(n) = A051027(n) * A000203(n).
EXAMPLE
a(1) = 1*1 = 1; a(2) = 4*3 = 12.
MAPLE
A000203 := proc(n) numtheory[sigma](n) ; end:
A051027 := proc(n) A000203(A000203(n)) ; end:
A164533 := proc(n) A051027(n)*A000203(n) ; end: seq(A164533(n), n=1..80) ; # R. J. Mathar, Aug 19 2009
MATHEMATICA
Table[DivisorSigma[1, DivisorSigma[1, n]]*DivisorSigma[1, n], {n, 1, 50}] (* G. C. Greubel, Mar 16 2019 *)
PROG
(PARI) A164533(n) = (sigma(sigma(n))*sigma(n)); \\ Antti Karttunen, Nov 17 2017
(PARI) a(n) = my(s = sigma(n)); s * sigma(s) \\ David A. Corneth, Nov 17 2017
(Magma) [DivisorSigma(1, DivisorSigma(1, n))*DivisorSigma(1, n): n in [1..50]]; // G. C. Greubel, Mar 16 2019
(Sage) [sigma(sigma(n))*sigma(n) for n in (1..50)] # G. C. Greubel, Mar 16 2019
CROSSREFS
Sequence in context: A183053 A126195 A248547 * A034319 A097427 A039366
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms checked by R. J. Mathar, Aug 19 2009
STATUS
approved