login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164533
a(n) = sigma(sigma(n))*sigma(n).
1
1, 12, 28, 56, 72, 336, 120, 360, 182, 702, 336, 1568, 336, 1440, 1440, 992, 702, 2184, 840, 4032, 2016, 3276, 1440, 10080, 992, 4032, 3600, 6720, 2160, 14040, 2016, 6552, 5952, 6480, 5952, 10192, 2280, 10080, 6720, 21060, 4032, 24192, 3696, 18816, 13104
OFFSET
1,2
FORMULA
a(n) = A051027(n) * A000203(n).
EXAMPLE
a(1) = 1*1 = 1; a(2) = 4*3 = 12.
MAPLE
A000203 := proc(n) numtheory[sigma](n) ; end:
A051027 := proc(n) A000203(A000203(n)) ; end:
A164533 := proc(n) A051027(n)*A000203(n) ; end: seq(A164533(n), n=1..80) ; # R. J. Mathar, Aug 19 2009
MATHEMATICA
Table[DivisorSigma[1, DivisorSigma[1, n]]*DivisorSigma[1, n], {n, 1, 50}] (* G. C. Greubel, Mar 16 2019 *)
PROG
(PARI) A164533(n) = (sigma(sigma(n))*sigma(n)); \\ Antti Karttunen, Nov 17 2017
(PARI) a(n) = my(s = sigma(n)); s * sigma(s) \\ David A. Corneth, Nov 17 2017
(Magma) [DivisorSigma(1, DivisorSigma(1, n))*DivisorSigma(1, n): n in [1..50]]; // G. C. Greubel, Mar 16 2019
(Sage) [sigma(sigma(n))*sigma(n) for n in (1..50)] # G. C. Greubel, Mar 16 2019
CROSSREFS
Sequence in context: A183053 A126195 A248547 * A034319 A097427 A039366
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms checked by R. J. Mathar, Aug 19 2009
STATUS
approved