login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164532
a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4.
4
1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096
OFFSET
1,2
COMMENTS
Interleaving of A000400 and A067411 without initial term 1.
Binomial transform is apparently A123011. Fourth binomial transform is A154235.
FORMULA
a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)).
G.f.: x*(1+4*x)/(1-6*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021
MATHEMATICA
LinearRecurrence[{0, 6}, {1, 4}, 40] (* G. C. Greubel, Jul 16 2021 *)
PROG
(Magma) [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ];
(Sage) [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021
CROSSREFS
Cf. A000400 (powers of 6), A067411, A123011, A154235.
Sequence in context: A174197 A071224 A305381 * A098660 A363631 A122174
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 15 2009
STATUS
approved