The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4. 4
 1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Interleaving of A000400 and A067411 without initial term 1. Binomial transform is apparently A123011. Fourth binomial transform is A154235. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,6). FORMULA a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)). G.f.: x*(1+4*x)/(1-6*x^2). a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011 a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021 MATHEMATICA LinearRecurrence[{0, 6}, {1, 4}, 40] (* G. C. Greubel, Jul 16 2021 *) PROG (Magma) [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ]; (Sage) [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021 CROSSREFS Cf. A000400 (powers of 6), A067411, A123011, A154235. Sequence in context: A174197 A071224 A305381 * A098660 A363631 A122174 Adjacent sequences: A164529 A164530 A164531 * A164533 A164534 A164535 KEYWORD nonn AUTHOR Klaus Brockhaus, Aug 15 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 01:37 EDT 2024. Contains 373510 sequences. (Running on oeis4.)