login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122174
First row sum of the matrix M^n, where M is the 5 X 5 matrix {{0,-1,-1,-1,-1}, {-1,0,-1,-1,0}, {-1,-1,0,0,0}, {-1,-1,0,1,0}, {-1,0,0,0,1}}.
1
1, -4, 6, -24, 41, -145, 273, -886, 1789, -5457, 11605, -33807, 74761, -210366, 479256, -1313465, 3061242, -8222492, 19501429, -51579259, 123983182, -324067194, 787044384, -2038584810, 4990387355, -12836179872, 31614557443, -80883958143, 200146505560, -509959672813
OFFSET
0,2
LINKS
Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
FORMULA
a(n) = 2*a(n-1)+5*a(n-2)-13*a(n-3)+7*a(n-4)-a(n-5); a(0)=1, a(1)=-4, a(2)=6, a(3)=-24, a(4)=41 (follows from the minimal polynomial x^5-2*x^4-5*x^3+13*x^2-7*x+1 of the matrix M).
G.f.: (1-3*x^3+9*x^2-6*x)/(1+x^5-7*x^4+13*x^3-5*x^2-2*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
MAPLE
with(linalg): M[1]:=matrix(5, 5, [0, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, 0, -1, -1, 0, 1, 0, -1, 0, 0, 0, 1]): for n from 2 to 30 do M[n]:=multiply(M[n-1], M[1]) od: 1, seq(M[n][1, 1]+M[n][1, 2]+M[n][1, 3]+M[n][1, 4]+M[n][1, 5], n=1..30);
MATHEMATICA
M = {{0, -1, -1, -1, -1}, {-1, 0, -1, -1, 0}, {-1, -1, 0, 0, 0}, {-1, -1, 0, 1, 0}, {-1, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 25}]
PROG
(PARI) a(n) = my(m=[0, -1, -1, -1, -1; -1, 0, -1, -1, 0; -1, -1, 0, 0, 0; -1, -1, 0, 1, 0; -1, 0, 0, 0, 1]); vecsum((m^n)[1, ]); \\ Michel Marcus, Jun 21 2017
CROSSREFS
KEYWORD
sign,easy,less
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Oct 29 2006
STATUS
approved