login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065941 Triangle T(n,k) = binomial(n-floor((k+1)/2), floor(k/2)). 64
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 3, 3, 1, 1, 1, 5, 4, 6, 3, 1, 1, 1, 6, 5, 10, 6, 4, 1, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 1, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Row sums give the Fibonacci sequence. So do the alternating row sums.

Triangle of coefficients of polynomials defined by p(0,x) = p(1,x) = 1, p(n+2,x) = x*p(n+1,x) + p(n,x). - Benoit Cloitre, May 08 2005

Another version of triangle in A103631. - Philippe Deléham, Jan 01 2009

The T(n,k) coefficients appear in appendix 2 of Parks' remarkable article "A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov" if we assume that the b(n) coefficients are all equal to 1 and ignore the first column. The complete version of this triangle including the first column is A103631. - Johannes W. Meijer, Aug 11 2011

From Gary W. Adamson, Sep 06 2011: (Start) Signed ++--++..., the roots are chaotic using f(x) = x^2 - 2 with cycle lengths shown in A003558 by n-th rows. Example: given row 3, x^3 + x^2 - 2x -1; the roots are (a = 1.24697,...; b = -.445041,...; c = -1.802937,...). Then (say using seed b with x^2 - 2) we obtain the trajectory -.445041,...-> -1.80193,...-> 1.24697,...; matching the entry "3" in A003558(3). Received from Herb Conn, Jan 2004:

Let x = 2*Cos 2A (A = Angle); then

Sin A/Sin A... = 1

Sin 3A/Sin A . = x + 1

Sin 5A/Sin A . = x^2 + x - 1

Sin 7A/Sin A . = x^3 + x - 2x - 1

Sin 9A/Sin A . = x^4 + x^3 - 3x^2 - 2x + 1

... (signed ++--++...). (End)

Or Pascal's triangle (A007318) with duplicated diagonals. Also triangle of coefficients of polynomials defined by P_0(x) = 1 and for n>=1, P_n(x) = F_n(x) + F_(n+1)(x), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = sum{i=0,...,floor((n-1)/2)}C(n-i-1,i)*x^(n-2*i-1).- Vladimir Shevelev, Apr 12 2012

The matrix inverse is given by

1;

1,1;

0,-1,1;

0,1,-2,1;

0,0,1,-2,1;

0,0,-1,3,-3,1;

0,0,0,-1,3,-3,1;

0,0,0,1,-4,6,-4,1;

0,0,0,0,1,-4,6,-4,1;

... apart from signs the same as A124645. - R. J. Mathar, Mar 12 2013

REFERENCES

A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. See Table 4.

Jay Kappraff, "Beyond Measure, A Guided Tour Through Nature, Myth and Number", World Scientific, 2002; p. 490.

Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)

LINKS

Nathaniel Johnston, Rows 0..100, flattened

Henry W. Gould, A Variant of Pascal's Triangle , The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271, with corrections.

A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. [Annotated scanned copy]

Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Journal of Dynamical Systems and Geometric Theories, Vol 2 (2004), p 65.

E. Munarini and N. Z. Salvi, Binary strings without zigzags, Séminaire Lotharingien de Combinatoire, B49h (2004), 15 pp.

P.C. Parks, A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.

P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n,k) = binomial(n-floor((k+1)/2), floor(k/2)).

As a square array read by antidiagonals, this is given by T1(n, k) = binomial(floor(n/2) + k, k). - Paul Barry, Mar 11 2003

Triangle is a reflection of that in A066170 (absolute values). - Gary W. Adamson, Feb 16 2004

Recurrences: T(k, 0) = 1, T(k, n) = T(k-1, n) + T(k-2, n-2), or T(k, n) = T(k-1, n) + T(k-1, n-1) if n even, T(k-1, n-1) if n odd. - Ralf Stephan, May 17 2004

G.f.: sum[n, sum[k, T(k, n)x^ky^n]] = (1+xy)/(1-y-x^2y^2). sum[n>=0, T(k, n)y^n] = y^k/(1-y)^[k/2]. - Ralf Stephan, May 17 2004

T(n,k) = A108299(n,k)*A087960(k) = abs(A108299(n,k)). - Reinhard Zumkeller, Jun 01 2005

From Johannes W. Meijer, Aug 11 2011: (Start)

  T(n,k) = A046854(n,n-k) = abs(A066170(n,n-k)).

  T(n+k,n-k) = A109223(n,k).

  T(n,k) = sum(T(j, k-2), j=k-2..n-2), 2 <= k <= n, n>=2; T(n,0) =1, T(n+1,1) = 1, n>=0. (End)

For n > 1: T(n, k) = T(n-2, k) + T(n-1, k), 1 < k < n. - Reinhard Zumkeller, Apr 24 2013

EXAMPLE

Triangle begins:

1

1 1

1 1 1

1 1 2 1

1 1 3 2 1

1 1 4 3 3 1

...

MAPLE

A065941 := proc(n, k): binomial(n-floor((k+1)/2), floor(k/2)) end: seq(seq(A065941(n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 11 2011

A065941 := proc(n, k) option remember: local j: if k=0 then 1 elif k=1 then 1: elif k>=2 then add(procname(j, k-2), j=k-2..n-2) fi: end: seq(seq(A065941(n, k), k=0..n), n=0..11);  # Johannes W. Meijer, Aug 11 2011

MATHEMATICA

Flatten[Table[Binomial[n-Floor[(k+1)/2], Floor[k/2]], {n, 0, 20}, {k, 0, n}]] (* Harvey P. Dale, Dec 11 2011 *)

PROG

(Haskell)

a065941 n k = a065941_tabl !! n !! k

a065941_row n = a065941_tabl !! n

a065941_tabl = iterate (\row ->

   zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1]

-- Reinhard Zumkeller, May 07 2012

(PARI) T065941(n, k) = binomial(n-(k+1)\2, k\2); \\ Michel Marcus, Apr 28 2014

CROSSREFS

Cf. A065942 (central stalk sequence), A000045 (row sums), A108299.

Reflected version of A046854.

Some triangle sums (see A180662): A000045 (Fi1), A016116 (Kn21), A000295 (Kn23), A094967 (Fi2), A000931 (Ca2), A001519 (Gi3), A000930 (Ze3).

Cf. A003558.

Cf. A182579, A059841.

Sequence in context: A136568 A152157 A039961 * A108299 A123320 A054123

Adjacent sequences:  A065938 A065939 A065940 * A065942 A065943 A065944

KEYWORD

nonn,tabl,easy

AUTHOR

Len Smiley, Nov 29 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)