login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333143 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = 3, with 0 <= k <= n. 6
1, 1, 1, 1, 5, 1, 1, 21, 18, 1, 1, 85, 255, 58, 1, 1, 341, 3400, 2575, 179, 1, 1, 1365, 44541, 106400, 24234, 543, 1, 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1, 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..44.

FORMULA

qStirling2(n, k, q) = qStirling2(n-1, k-1, q) + qBrackets(k+1, q)*qStirling2(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.

Note that also a second definition is used in the literature which has an additional factor q^k attached to the first term in the equation above. The two versions differ by a factor of q^binomial(k,2).

EXAMPLE

[0] 1

[1] 1, 1

[2] 1, 5, 1

[3] 1, 21, 18, 1

[4] 1, 85, 255, 58, 1

[5] 1, 341, 3400, 2575, 179, 1

[6] 1, 1365, 44541, 106400, 24234, 543, 1

[7] 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1

[8] 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1

MAPLE

qStirling2 := proc(n, k, q) option remember; with(QDifferenceEquations):

if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;

qStirling2(n-1, k-1, p) + QBrackets(k+1, p)*qStirling2(n-1, k, p);

subs(p = q, expand(%)) end:

seq(seq(qStirling2(n, k, 3), k=0..n), n=0..9);

MATHEMATICA

qStirling2[n_, k_, q_] /; 1 <= k <= n := (* q^(k-1) *) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];

qStirling2[n_, 0, _] := KroneckerDelta[n, 0];

qStirling2[0, k_, _] := KroneckerDelta[0, k];

qStirling2[_, _, _] = 0;

Table[qStirling2[n + 1, k + 1, 3], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2020 *)

CROSSREFS

T(n, 1) = A002450(n), T(n, n-1) = A000340(n).

Cf. A139382 (q=2), A333142.

Sequence in context: A176242 A036969 A080249 * A157154 A022168 A157212

Adjacent sequences: A333140 A333141 A333142 * A333144 A333145 A333146

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Mar 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)