login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333141 G.f.: Sum_{k>=1} (k^2 * x^(k^2) / Product_{j=1..k} (1 - x^j)). 5
0, 1, 1, 1, 5, 5, 9, 9, 13, 22, 26, 35, 48, 57, 70, 88, 117, 135, 173, 207, 261, 304, 374, 433, 528, 628, 739, 864, 1032, 1198, 1416, 1639, 1914, 2212, 2569, 2949, 3433, 3920, 4511, 5150, 5925, 6732, 7720, 8736, 9969, 11284, 12823, 14444, 16395, 18457, 20836 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(1/4), where c = A333155^2 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.076061100391958657489521534823556... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1,

`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

end:

a:= n-> add(k^2 * b(n-k^2, k), k=1..floor(sqrt(n))):

seq(a(n), n=0..50); # after Alois P. Heinz

MATHEMATICA

nmax = 50; CoefficientList[Series[Sum[n^2 * x^(n^2) / Product[1 - x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

CROSSREFS

Cf. A003114, A268188.

Sequence in context: A168277 A163980 A333154 * A290968 A011986 A047880

Adjacent sequences: A333138 A333139 A333140 * A333142 A333143 A333144

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Mar 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 02:16 EST 2022. Contains 358544 sequences. (Running on oeis4.)