login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333155
Decimal expansion of a constant related to the asymptotics of A268188 and A333153.
7
5, 9, 3, 2, 4, 2, 2, 1, 5, 0, 0, 3, 3, 6, 9, 1, 2, 7, 1, 8, 4, 1, 3, 7, 6, 1, 7, 3, 3, 0, 2, 5, 5, 9, 5, 4, 1, 1, 0, 9, 9, 5, 9, 5, 4, 9, 6, 2, 7, 9, 5, 7, 4, 2, 9, 0, 6, 0, 2, 4, 5, 7, 8, 6, 0, 4, 5, 3, 5, 9, 2, 2, 3, 8, 5, 4, 6, 8, 1, 3, 3, 3, 3, 2, 5, 5, 0, 4, 8, 0, 7, 2, 0, 2, 8, 1, 9, 6, 6, 3, 9, 7, 1, 0, 7, 1
OFFSET
0,1
FORMULA
Equals sqrt(15) * log(phi) / Pi, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)).
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)).
EXAMPLE
0.5932422150033691271841376173302559541109959549627957429060245786...
MAPLE
evalf(sqrt(15) * log((sqrt(5) + 1)/2) / Pi, 120);
MATHEMATICA
RealDigits[Sqrt[15]*Log[GoldenRatio]/Pi, 10, 105][[1]]
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 09 2020
STATUS
approved