login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333152 G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)). 3
0, 1, 1, 1, 17, 17, 33, 33, 49, 130, 146, 227, 324, 405, 502, 664, 1017, 1179, 1613, 2031, 2721, 3220, 4166, 4921, 6204, 7840, 9379, 11352, 14028, 16882, 20520, 24511, 29286, 34864, 41401, 48741, 58417, 68144, 80207, 93698, 110325, 128124, 150436, 173424 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
LINKS
FORMULA
a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(5/4), where c = A333155^4 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.026768664197762321048783840410317... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(k^4 * b(n-k^2, k), k=1..floor(sqrt(n))):
seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[n^4*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A081702 A345735 A238235 * A040273 A022351 A146873
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 09 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 02:02 EDT 2023. Contains 363068 sequences. (Running on oeis4.)