login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333152
G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)).
3
0, 1, 1, 1, 17, 17, 33, 33, 49, 130, 146, 227, 324, 405, 502, 664, 1017, 1179, 1613, 2031, 2721, 3220, 4166, 4921, 6204, 7840, 9379, 11352, 14028, 16882, 20520, 24511, 29286, 34864, 41401, 48741, 58417, 68144, 80207, 93698, 110325, 128124, 150436, 173424
OFFSET
0,5
COMMENTS
In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
LINKS
FORMULA
a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(5/4), where c = A333155^4 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.026768664197762321048783840410317... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(k^4 * b(n-k^2, k), k=1..floor(sqrt(n))):
seq(a(n), n=0..50); # after Alois P. Heinz
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[n^4*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 09 2020
STATUS
approved