login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)).
3

%I #8 Mar 09 2020 12:49:58

%S 0,1,1,1,17,17,33,33,49,130,146,227,324,405,502,664,1017,1179,1613,

%T 2031,2721,3220,4166,4921,6204,7840,9379,11352,14028,16882,20520,

%U 24511,29286,34864,41401,48741,58417,68144,80207,93698,110325,128124,150436,173424

%N G.f.: Sum_{k>=1} (k^4 * x^(k^2) / Product_{j=1..k} (1 - x^j)).

%C In general, if m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ r^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)), where r = A333155 = sqrt(15) * log(phi) / Pi = 0.59324221500336912718413761733... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

%H Vaclav Kotesovec, <a href="/A333152/b333152.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ c * exp(2*Pi*sqrt(n/15)) * n^(5/4), where c = A333155^4 * phi^(1/2) / (2 * 3^(1/4) * 5^(1/2)) = 0.026768664197762321048783840410317... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

%p b:= proc(n, i) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

%p end:

%p a:= n-> add(k^4 * b(n-k^2, k), k=1..floor(sqrt(n))):

%p seq(a(n), n=0..50); # after _Alois P. Heinz_

%t nmax = 50; CoefficientList[Series[Sum[n^4*x^(n^2)/Product[1-x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

%Y Cf. A003114, A268188, A333141, A333151.

%K nonn

%O 0,5

%A _Vaclav Kotesovec_, Mar 09 2020