login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238235
Numerators of Euler twin numbers Et(n).
0
1, -1, -1, -1, 1, 1, -1, -17, 17, 31, -31, -691, 691, 5461, -5461, -929569, 929569, 3202291, -3202291, -221930581, 221930581, 4722116521, -4722116521, -968383680827, 968383680827, 14717667114151, -14717667114151
OFFSET
0,8
COMMENTS
Et(n) = 1, -1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, 31/2, -31/2, -691/4, 691/4, 5461/2, -5461/2,... =a(n)/b(n) is mentioned in A233808.
Denominators: b(n)= 1, 2, 2, 4, 4, 2, 2, 8, 8,... = A065176(n) with 1 instead of 0.
Et(n) is the first difference of 0, followed by A198631(n)/A006519(n+1).
Et(n+2) = -1/2, -1/4, 1/4, 1/2,... is an autosequence of the second kind. Its main diagonal is the double of the following diagonal, the inverse binomial transform of Et(n+2) being Et(n+2) signed.
The denominators of the difference table of Et(n+2) are even numbers of the form 2^p. For the Bernoulli twin numbers A051716(n+1)/A051717(n+2), the denominators of the difference table, A168426(n), are multiples of 3.
FORMULA
Binomial transform of A141424(n)/(A053644(n) with 1 instead of 0).
a(2n+3) = (-1)^n*A002425(n+2) = -a(2n+4).
MATHEMATICA
Join[{1, -1, -1}, Table[{nu = Numerator[EulerE[2*n+1, 1]], -nu}, {n, 1, 12}]] // Flatten (* Jean-François Alcover, Feb 24 2014 *)
CROSSREFS
Cf. A051716/A051717 (Bernoulli twin numbers).
Sequence in context: A060360 A081702 A345735 * A333152 A040273 A022351
KEYWORD
sign
AUTHOR
Paul Curtz, Feb 20 2014
STATUS
approved